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Abstract 
 
 
 

RELATIONSHIP OF MITOCHONDRIAL ENZYMES TO FATIGUE INTENSITY AND 
HEALTH-RELATED QUALITY OF LIFE IN MEN WITH PROSTATE CANCER 
RECEIVING EXTERNAL BEAM RADIATION THERAPY 
 
By Kristin A. Filler, PhD, RN 
 
A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of 
Philosophy at Virginia Commonwealth University.  
 

Virginia Commonwealth University, 2014. 
 

Major Director: Nancy L. McCain, PhD, RN, FAAN 
Nursing Alumni Distinguished Professor, Adult Health and Nursing Systems, School of Nursing 

  
 

Introduction: Cancer-related fatigue is often described by patients as a lack of energy, mental or 

physical tiredness, diminished endurance, and prolonged recovery after activity. Etiologic 

mechanisms underlying CRF are not well understood. 

Methods: A literature review was conducted to examine studies that had investigated the 

association of mitochondrial dysfunction with fatigue. The major conclusion from this review 

was that alterations in energy metabolism may contribute to fatigue. Therefore, the dissertation 

study focused on laboratory techniques for measuring mitochondrial oxidative phosphorylation 

enzymes (complexes I-V) and a mitochondrial-specific oxidative stress marker (superoxide 

dismutase 2 [SOD2]). The primary aim of the dissertation research was to describe levels of 

biomarkers of mitochondrial function, fatigue, and health-related quality of life (HRQOL) before 

and at the completion of external beam radiation therapy (EBRT) in men with nonmetastatic 
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prostate cancer (NM-PC). To achieve this aim a secondary analysis of a descriptive, longitudinal 

study was conducted (#10-NR-0128).  

Results: A total of n = 22 men with NM-PC were included in this study. There were significant 

increases in fatigue and a significant decrease HRQOL from baseline to the completion of 

EBRT. However, there was no significant change in the biomarkers of mitochondrial function 

from baseline to EBRT completion. Given the exploratory nature of the study, it was decided to 

further investigate the patient sample to understand the relationship of fatigue and mitochondrial 

function in a well-characterized fatigue phenotype. There was preliminary evidence to support 

the possibility of distinct patterns of mitochondrial enzyme levels between those with a high 

intensification of fatigue and those with a low intensification of fatigue during EBRT; however, 

these differences were not statistically significant.  

Discussion: To our knowledge, this is the first study to describe the relationship between 

mitochondrial enzymes and fatigue before and during EBRT in men with NM-PC. The most 

important preliminary finding from this study is the possibility that mitochondrial enzymes might 

be related to fatigue intensification during EBRT. Future studies will be critical to determine if 

these preliminary findings are replicable, and if so, whether there are potential therapeutic targets 

in individuals at highest risk for fatigue intensification during EBRT.  
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Chapter One 
 

 
 
My experience as an oncology nurse has exposed me to the clinical issues surrounding 

quality of life in patients with cancer, especially those issues surrounding symptom management. 

My experiences as both a doctoral student and research assistant have provided me with the 

knowledge and theoretical foundation in which to conduct symptom mechanism and 

biobehavioral research in the oncology population. An enhanced understanding of the etiology of 

symptoms can lead to the development of more targeted and individualized management 

strategies to improve health-related quality of life in this population. 

My dissertation research focused on understanding the role that mitochondria might play 

in the development of cancer-related fatigue during external beam radiation therapy. To identify 

areas needing further research, a review of the literature was conducted to examine markers of 

mitochondrial function that may have an association with fatigue in order. Dysfunctions in the 

mitochondrial structure, mitochondrial function (as indicated by mitochondrial enzymes and 

oxidative/nitrosative stress), mitochondrial energy metabolism (ATP production and fatty acid 

metabolism), immune response, and genetics were investigated as potential contributors to 

fatigue.  A detailed description of this literature review was published in the journal BBA 

Clinical and is presented as Chapter Two. 

 The findings from this literature review guided the development of the dissertation 

proposal. The primary aim of the dissertation research was to describe levels of biomarkers of 
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mitochondrial function, fatigue, and health-related quality of life (HRQOL) before and at the 

completion of EBRT in men with nonmetastatic prostate cancer. The specific aims were to: (1) 

describe levels of biomarkers of mitochondrial function (mitochondrial oxidative 

phosphorylation enzymes [complexes I-V] and the antioxidant manganese superoxide dismutase 

2 [MnSOD2]), fatigue and HRQL before and at completion of EBRT, and (2) examine 

relationships over time in levels of biomarkers of mitochondrial function, fatigue, and HRQOL. 

Following the initial analyses, an exploratory aim evolved to compare levels of biomarkers of 

mitochondrial function in men with little increase in fatigue from baseline to completion of 

EBRT to those with greater increases in fatigue from baseline to completion of EBRT.  

There were significant increases in fatigue and a significant decrease in HRQOL from 

baseline to the completion of EBRT; however, there were no significant differences in 

mitochondrial enzymes from baseline to completion of EBRT. Due to the exploratory nature of 

this study, the participant sample was then categorized based upon their fatigue intensification 

during EBRT.  Once categorized, we found preliminary evidence to support the possibility of 

patterns of mitochondrial enzyme levels between the two fatigue groups; however, these 

differences were not statistically significant. A detailed description of this dissertation research is 

presented as Chapter Three. 

To our knowledge, this is the first study that explored measures of mitochondrial enzyme 

function in relationship to fatigue prior to and at the completion of EBRT in men with prostate 

cancer. Future studies will be critical to determine if these preliminary findings are replicable, 

and if so, whether there are potential therapeutic targets in individuals at highest risk for fatigue 

intensification during EBRT, in order to optimize fatigue management and improve HRQOL.  

Future directions for this line of research are discussed in Chapter Four. 



www.manaraa.com

3 

 

 
 
 
 
 

Chapter Two 
 
 
 

1. Introduction 

Mitochondria are increasingly recognized as major contributors to human health and 

disease because of their location and influence (Cohen & Gold, 2001). Mitochondria have an 

essential role in energy production through the process of oxidative phosphorylation where 

nutrients are converted into adenosine triphosphate (ATP), which powers many of the cells’ 

activities. In addition to energy production, mitochondria have been implicated in various 

physiologic processes including the production of reactive oxygen species (ROS), pyrimidine 

and lipid biosynthesis, regulation of cellular levels of substrates (amino acids, metabolites, 

enzyme cofactors), apoptosis, metal (Fe-S cluster and heme) metabolism, calcium homeostasis 

and flux, neurotransmitter synthesis, heat production, and insulin secretion (Duchen, 2004; 

Nunnari & Suomalainen, 2012; Pieczenik & Neustadt, 2007).  Therefore, damage to 

mitochondria can have widespread consequences (Duchen, 2004). 

Health conditions such as cancer, diabetes, fibromyalgia, and serious mental disorders 

such as schizophrenia and bipolar disease are also proposed to result from mitochondrial 

dysfunction, though the links are less clear (Pieczenik & Neustadt, 2007; Reynolds, 2007).  

Mechanisms underlying mitochondria–related disease states have predominantly focused on 

DNA damage and ROS generation (Cohen & Gold, 2001; Pieczenik & Neustadt, 2007).  

Mitochondrial dysfunction can be of primary (inherent) or secondary (acquired dysfunction) 
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origin (Cohen & Gold, 2001; Read & Calnan, 2000).  Primary dysfunction results from 

mitochondrial DNA (mtDNA) mutations inherited from mothers, who are the sole contributors 

of mitochondria to their offspring (Cohen & Gold, 2001). Mitochondrial DNA has a much higher 

mutation rate than nuclear DNA because it lacks protective histones (Read & Calnan, 2000), is 

readily exposed to damage from ROS production (Alexander et al., 2010; Pieczenik & Neustadt, 

2007; Reynolds, 2007), and lacks certain DNA repair mechanisms (Cohen & Gold, 2001). 

Secondary mitochondrial dysfunction results from the influence of external mechanisms such as 

environmental or pharmacologic toxins that can damage the mtDNA (Cohen & Gold, 2001). 

Mitochondria can protect themselves from the accumulation of damage through various quality 

control mechanisms (e.g., fission and fusion) (Nunnari & Suomalainen, 2012; Youle & van der 

Bliek, 2012); however, if these mechanisms are altered, mitochondrial dysfunction can lead to 

disease (Blackstone & Chang, 2011; Duchen, 2004). Past research has predominantly focused on 

the role of mitochondrial dysfunction on disease pathology.  However, some studies have 

investigated how mitochondrial dysfunction is associated with the development of distressing 

symptoms such as fatigue, neuropathic pain, weakness, and depression (Pieczenik & Neustadt, 

2007); however, these investigations are still in their infancy. This paper reviewed studies that 

investigated the association of mitochondrial dysfunction with fatigue. 

Fatigue is a hallmark symptom of mitochondrial disease. Fatigue is often described by 

patients as a lack of energy, mental or physical tiredness, diminished endurance, and the need for 

a prolonged recovery after physical activity (Rosenthal, Majeroni, Pretorius, & Malik, 2007).  

Fatigue is reported by patients to be unrelieved by rest (Jason, Evans, Brown, & Porter, 2010; 

Rosenthal et al., 2008). As pervasive and debilitating as fatigue is, the etiology of fatigue 

remains poorly understood.  Without a known pathophysiological mechanism for fatigue, there is 
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minimal consistency in its clinical definition (Alexander et al., 2010; Hardy & Studenski, 2010; 

Jason et al., 2010; Swain, 2000).  Furthermore, the lack of a proper clinical definition of fatigue 

contributes to its underdiagnosis and poor management, which in turn contributes to increased 

symptom burden and poorer quality of life in patients with fatigue (Norheim, Jonsson, & Omdal, 

2011). The purpose of this systematic review was to examine markers of mitochondrial function 

( in adults)  that have evidence of an association with fatigue in order to identify areas needed for 

further research. In this paper markers of mitochondrial function that associate with fatigue in 

adult patients were reviewed in order to describe empirical evidence of a relationship between 

mitochondrial dysfunction and fatigue and to propose possible research directions that would 

enhance understanding of the role of mitochondrial dysfunction in fatigue.   

2. Methods 

An initial literature query was conducted in the following four reference databases using 

search strategies as summarized in Table 1. The initial search resulted in 2,055 articles. After 

removing duplicates, the abstracts of 1,220 articles were assessed for relevance to the area of 

interest. Abstracts that discussed the association of markers of mitochondrial function and 

fatigue were selected to be included in this review. In addition, studies were excluded if they 

were more than 20 years old, were not original research, were animal or cell-based studies, 

investigated the effect of medication or treatment on fatigue, mitochondrial markers or both, or 

measured induced fatigue through the use of exercise or electric stimulation. Also excluded were 

letters, literature reviews, notes, conference or meeting abstracts, book chapters, editorials, 

dissertations, case reports or series, short reports, workshop reports, and practice guidelines. A 

total of 54 articles were selected for full-text review. Of these, 25 were excluded based upon the 
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aforementioned criteria, 3 were excluded because they focused on neuroimaging, and 1 was 

excluded because it included children. A total of 25 articles were selected for full review. 

Table 1. Search Criteria 

  

3. Results 

Twelve of the 25 articles (48%) were published within the last five years.  Twenty-two 

(88%) of the studies used a cross-sectional design; three used a repeated-measures design.  

Eighteen studies investigated only patients with chronic fatigue syndrome (CFS); remaining 

studies investigated a combination of myalgic encephalomyelitis (ME) and CFS (n=2), ME 

(n=1), multiple sclerosis (n=1), HIV-related fatigue (HRF) (n=1), systemic lupus erythematosus 

(SLE) (n=1), and cancer-related fatigue (CRF) (n=1). One study restricted participant gender and 

included only males (Hsiao, Wang, Kaushal, & Saligan, 2013). A complete description of study 

attributes are found in Tables 2 and 3. 

Database Search Terms Filters Yield 
PubMed mitochondria OR mitochondrial AND 

fatigue 
Humans 
English 

N=358 

Scopus (TITLE(mitochondria OR mitochondrial) 
AND TITLE(fatigue)) 
 
(TITLE(mitochondria OR mitochondrial) 
AND TITLE(fatigue)) 

English N=519 

Web of Science Topic=(mitochondria OR mitochondrial) 
AND Topic=(fatigue) 

English N=624 

Embase 'fatigue'/exp AND ('mitochondrion'/exp 
OR 'mitochondrial respiration'/exp OR 
'mitophagy'/exp OR 'mitochondrial 
dna'/exp OR 'disorders of mitochondrial 
functions'/exp OR 'mitochondrial 
dynamics'/exp OR 'mitochondrial energy 
transfer'/exp OR 'mitochondrial 
enzyme'/exp OR 'mitochondrial gene'/exp 
OR 'mitochondrial genome'/exp OR 
'mitochondrial membrane potential'/exp 
OR 'mitochondrial protein'/exp OR 
'mitochondrion swelling'/exp) 

Humans 
English 

N=554 
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Table 2. Studies Investigating Mitochondrial Dysfunction in CFS and/or ME 

Authors Study 
Design 

Sample 
Characteristics 

Fatigue 
Definition 

Fatigue 
Measurement  

Mitochondrial 
Marker 
Assessed 

Sample 
Source Association to Fatigue 

Edwards, 
et al. 
(1993). 

cross-
sectional, 
descriptive 

n= 74 CFS 
patients 
 
Controls: 
  a. n= 34 
patients 
     with myalgia 
  b. n= 22 
      
asymptomatic 
      controls     

not 
specified 

CFS diagnosis 
(criteria/guidelines 
not specified) 

1. 
mitochondrial 
    hyperplasia                                                                      
 
2. cytochrome 
c 
    oxidase                                                                       
 
3. 
myoadenylate  
    deaminase  

muscle 
biopsy from 
either:  
 a. tibialis 
anterior 
 b. 
quadriceps 
 c. gastrocne-
mius, medial 
     head 

No significant 
differences between CFS 
patients and controls. 

Kuratsune, 
et al. 
(1994). 

cross-
sectional, 
descriptive  
 
 

n= 38 CFS 
patients 
 
Controls: 
n= 308 healthy 
volunteers 

CDC 1988 
criteria 

CFS diagnosis 
according to CDC 
criteria 

1. free L-
carnitine  
 
2. acylcarnitine 

serum Free L-carnitine levels 
lower in male CFS 
patients and higher in 
female CFS compared to 
controls; however, not 
statistically significant. 
 
Acylcarnitine levels 
lower (p < .001) in CFS 
patients compared to 
controls.                                                                                       
 
In CFS patients, lower 
acylcarnitine levels 
associated with worse 
performance and 
increased symptom 
burden at initial exam.  
Upon symptom 
improvement, 
acylcarnitine levels 
increased (p < .02). 

Behan et 
al. (1995). 
 

cross-
sectional, 
descriptive 
 

n= 31 CFS 
patients 
 
Controls: 
n= 20 
volunteers with 
no muscle 
disease 

CDC 1988 
criteria 
 

CFS diagnosis 
according to CDC 
criteria 
 

1. histological 
 
2. 
histochemical 
 
3. 
ultrastructural 

vastus 
lateralis 
muscle 
biopsy 
 

Size and morphology of 
mitochondria showed 
differences between CFS 
and controls. No 
statistical data provided. 

Plioplys et 
al. (1995a). 

cross-
sectional 

n= 15 CFS 
patients 
 
Controls: 
n= 15; age and 
sex-matched 
healthy 
volunteers 
 

1. CDC 
1988 & 
1994 
criteria  
 
2. British & 
Australian 
definitions 
for CFS 
 

1. Fatigue 
Severity Scale 
(FSS) 
 
2. Beck 
Depression 
Inventory (BDI) 
 
3. Symptom 
Checklist 90-R  
 
4. CFS 
Impairment Index 
(CFS-II).   
 
5. Structural 
Clinical Interview 
for the DSM III-
R-Nonpatient 
Edition 
 

ultrastructural 
exam of 
mitochondria 
 
 

right vastus 
lateralis 
muscle 
biopsy                
 
 

No significant 
differences upon 
structural exam between 
CFS patients and 
controls. 

carnitine levels 
 

serum 
 

Negative association 
between acylcarnitine 
levels and CFS-II mental 
index score (r = -0.761, p 
< 0.01) and total score (r 
= -0.634, p < 0.05). 
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Plioplys et 
al. (1995b). 

cross-
sectional 

n= 35 CFS 
patients 
 
Controls: 
  a. Mayo clinic 
      normative 
data 
      (n=85) 
  b. historical 
study 
      (Kuratsune, 
et 
      al. 1994.) 
 

CDC 1988 
criteria 

1. FSS 
 
2. BDI 
 
3. Symptom 
Checklist 90-R 
 
4. CFS-II.  
 

carnitine 
levels: total, 
free, 
aceylcarnitine 
 

serum 
 

Total carnitine lower in 
female (p < .001) and 
male (p < .05) CFS 
patients compared to 
Mayo clinic data. 
 
Free carnitine lower in 
female (p <  .01) and 
male (p < .05) CFS 
patients compared to 
Mayo clinic data. 
 
Acylcarnitine lower in 
CFS patients compared to 
historical study controls 
(p < .00001).  
 
Free carnitine lower in 
CFS patients compared to 
historical controls (p < 
.00001). 
 
Total carnitine lower in 
CFS patients compared to 
historical controls (p < 
.00001).  
 
Free carnitine correlated 
with CFS-II physical 
impairment subset (r = 
.412, p < .05). 
 
Negative correlation 
between FSS and free 
carnitine (r = -.496, p = 
.02), and total carnitine 
and FSS (r = -.473, p = 
.02). 
 

McArdle et 
al. (1996). 
 

cross-
sectional 
 

n= 54 CFS 
patients  only 
included n= 34 
for viral 
analysis 
 
Controls: 
  a. for enzyme 
      comparison  
      n = 16 from 
a 
      previous 
study 
  b. for RNA 
      detection 
      n= 10 
      patients 
      undergoing 
      orthopedic 
      surgery; no 
      muscle   
damage 
      or fatigue. 

1. diagnosis 
with CFS 
on the basis 
of 
complaints 
of muscle 
pain and 
fatigue  
 
2. diagnosis 
conformed 
to the 
Oxford 
Consensus 
Criteria 
 

Not mentioned 
 

1. 
mitochondrial 
    enzymes:  
    a. citrate 
        synthase 
    b. succinate 
        reductase 
    c. 
cytochrome-c 
       oxidase 

anterior 
tibialis 
muscle 
biopsy 
 

Reduction in all 3 
mitochondrial enzyme 
activities (p < .05) in 
CFS patients compared to 
control values from a 
previous study. 
  

 
2. presence of 
   enteroviral 
RNA 
 

 
Failed to detect evidence 
of enteroviral RNA. 
                                                                                                      

Behan et 
al. (1999). 
 

cross-
sectional 
 

n= 16 CFS 
patients 
 
Controls: 
n =10 healthy 
volunteers 

CDC 1994 
criteria. 
 

CFS diagnosis  
according to CDC 
criteria 
 

1. Aerobic 
capacity 
     a. pyruvate 
     b. lactate 
     c. L/P ratio 
     d. 

Right or left 
vastus 
lateralis 
muscle 
biopsy 

Increased pyruvate levels 
in CFS patients (p = 
.053). 
 
All other biological 
parameters showed no 
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 respiratory 
         capacity 
     e. 
cytochrome- 
         c oxidase    
     f. LDH                                                                                                                                                                                                                             
 
2. DNA 
analysis 
     a. total 
mtDNA 
        volume 
     b. mtDNA 
     
rearrangements 
     c. point 
         mutation 
at 
         
nucleotide 
         pair 3243 
     d. two 
         deletions: 
        mtDNA 
4977 
        mtDNA 
7436                                                                                                                 
 
3. Histological, 
Histochemical, 
and 
Ultrastructural 
examination 

significant findings 
between the groups. 
 

Soetekouw 
et al. 
(2000). 

cross-
sectional 

n= 25 
Caucasian, 
female CFS 
patients 
 
Controls: 
n= 25 age- and 
sex- matched 
healthy 
volunteers 
 

1. CDC 
1994 
criteria.                                           
 
2. Fatigue 
with 
substantial 
ADL 
impairment: 
  a. a score 
of 
     35+ on 
     the 
Checklist 
Individual 
Strength 
     
subjective 
     fatigue 
     subscale 
  b. a score 
of 
     750+ on 
     the 
     weighted 
     total 
score 
     of the 
     Sickness 
Impact 
Profile. 

1. Checklist 
Individual Strength 
(CIS) 
 
2. Sickness Impact 
Profile (SIP) 

1. carnitine 
levels: total, 
free, & 
acylcarnitine                                              
 
2. carnitine 
ester profiles 
 

serum 
 

CFS patients were more 
fatigued (p < .001) and 
had more functional 
impairment (p < .001) as 
determined by 
questionnaires.      
 
No significant 
differences with any of 
the biologic markers 
between the groups.                                                                                                                       

Kurup et 
al. (2003b). 
 

cross-
sectional 
 

n= 15 CFS 
patients 
 
Controls: 

CDC 
criteria 
 

structured clinical 
interview to assess 
CFS and comorbid 
conditions 

Mitochondrial 
markers: 
1. ubiquinone 
2. ROS/RNS 

RBCs and 
plasma/serum 
 

1. Ubiquinone lower in 
CFS patients (F = 259.36, 
p < .01) 
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n= 45 age and 
sex-matched 
healthy 
volunteers 
 

     a. MDA 
    b. 
Hydroperoxide 
    c. 
conjugated 
        dienes 
    d. NO 
3. antioxidants 
    a. 
glutathione 
    b. SD 
    c. catalase 
    d. GSH 
peroxidase 
    e. GSH 
        reductase 

2. ROS markers higher in 
CFS patients 
    a. MDA  
        (F= 4.56, p < 0.05) 
    b. Hydroperoxide 
        (F= 3.25, p < 0.05)  
    c. conjugated dienes 
        (F= 16.21, p < 0.01)  
    d. NO 
         (F= 6.54, p < 0.05)  
3. Antioxidants lower in 
ME patients 
    a. glutathione 
        (F= 8.36, p < 0.05) 
    b. SD 
        (F= 7.56, p < 0.05) 
    c. catalase 
        (F= 3.98, p < 0.05) 
    d. GSH peroxidase 
        (F= 11.26, p < 0.01) 
    e. GSH reductase 
        (F= 4.26, p < 0.05) 

Kaushik et 
al. (2005). 

repeated 
measures: 
two time 
points 6 
months apart 
during which 
symptoms did 
not vary 
significantly 
 

n= 25 CFS 
patients 
 
Controls: 
1. Microarray, 
n= 25 age- and 
sex- matched 
normal blood 
donors 
 
2. Real-time 
PCR, n =21 
age- and sex-
matched normal 
blood donors 
 
 

CDC 1994 
criteria. 
 
 

1. diagnosis of 
CFS according to 
CDC criteria 
 
2. Chalder Fatigue 
Scale 
 

 Real-time 
PCR   
 

Peripheral 
blood 
mononuclear 
cells 
(PBMCs) 
 

16 genes differentially 
expressed in CFS patients 
(15 genes up-regulated, 1 
down-regulated).   
 
3 up-regulated genes are 
located in the 
mitochondria:  
   a. EIF2B4 
       (p = 1.8 x 10-5) 
   b. EIF4G1 
       (p = 7.63 x 10-13) 
   c. MRPL23 
       (p = 1.25 x 10-6) 
 
2 up-regulated genes for 
peroxisomal function, 
ABCD4 (p = .00190 and 
PEX16 (p = .0126), 
suggesting enhanced 
defense to oxidative 
damage. 

Vernon et 
al. (2006). 
 

repeated 
measures: 
baseline, 
2-3 weeks,  
4-6 weeks,  
3 months,  
6 months (in 
those with 
symptoms), 
& 12 months.                                  
 

n= 5 with 
symptoms 
suggestive of 
infectious 
mononucleosis 
with 
provisional lab 
confirmation 
 
Controls: 
n= 5 controls 
that recovered 
promptly from 
infectious 
mononucleosis; 
HLA –A and -
B, sex, and age-
matched.                                                        
 

CDC 1994 
criteria 

1. diagnosis of 
CFS according to 
CDC criteria 
 
2. self-report and 
interview 
assessment of 
psychological and 
physical health. 

gene 
transcription 
patterns 
 

PBMCs 
 

Due to small n in each 
group, data was 
categorized by time 
periods: early (baseline-3 
months) and late (> 6 
months following disease 
onset). 
 
Early Phase: 
23 genes differentially 
expressed between cases 
and controls; 8 expressed 
in cases and involved 
binding and metabolism 
ontologies. 
 
Early & Late Phase: 
24 genes significantly 
different between cases 
and controls; 12 genes 
are associated with 
mitochondrial function.  
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Hokama et 
al. (2008).                                                                                                           
 

cross-
sectional 
 

n= 328 CFS 
patients    
 
n= 18 CCFP 
patients          
 
n= 8 GWVs                  
 
n= 15 PC 
patients                    
 
n= 49 normal, 
healthy controls    

CDC 1994 
criteria 
 

CFS diagnosis 
according to CDC 
criteria 

1. 
Phospholipids 
 
2. Anti-
cardiolipin 
(aCL) 
antibodies 
 

serum 
 

CFS, CCCP, GWV, and 
PC patients have 
cardiolipin  associated 
with mitochondrial 
membrane.   
 
The presence of aCL was 
also detected. 

Hokama et 
al. (2009).                                                                                                     
 

cross-
sectional 

 

n= 40 CFS 
patients 
 

CDC 1994 
criteria 
 

CFS diagnosis 
according to CDC 
criteria 
 

Anti-
cardiolipin 
antibodies  
 

serum 
 

IgM isotope present in 
95% of CFS patients. IgG 
isotype present in 10% 
and the IgA isotype 
present in 5% of CFS 
patients. 

Maes et al. 
(2009b). 
 

cross-
sectional 
 

n= 35 major 
depressed 
patients; n= 17 
patients had a 
diagnosis with 
CFS 
 
Controls: 
n= 22 healthy 
volunteers 
 

1. 1994 
CDC 
criteria 
 
2. Criteria: 
 a. severe 
    chronic 
    fatigue 
    for at 
    least 6 
    months 
 b. at least 4 
     
additional 
     
symptoms 
     from a 
     checklist 

1. CFS diagnosis 
according to CDC 
criteria 
 
2. Fibromyalgia 
and CFS Rating 
Scale (FF scale) 
 

CoQ10 levels 
 

plasma 
 

Depressed patients with 
CFS had lower plasma 
CoQ10 than depressed 
patients without CFS (F 
= 8.7, df = 1/33, p = 
.006). 
 
CFS independently 
predicted low CoQ10 
values (F = 4.3, df = 
1/31, p = .04).                                                                                                                         

Myhill, et 
al. (2009) 
 

cross-
sectional 
 

n= 71 CFS 
patients 
 
Controls: 
n= 53 normal, 
healthy 
volunteers  
 

CDC 1994 
criteria 
 

1. CFS diagnosis 
according to CDC 
criteria  
 
2. CFS Ability 
Scale 

1. "ATP 
Profile" test: 
   a. ATP 
concentration 
      and ATP 
ratio 
   b. The 
efficiency of 
       ox-phos 
process 
   c. 
Translocator 
(TL) protein 
       function 
(TL-OUT 
       and TL-
IN)                                                                                                                          
 
2. 
Mitochondrial 
Energy Score 
(MES) 
 

neutrophils 
 

Patients grouped into 3 
groups based on CFS 
Ability Scale scores: very 
severe (VS), severe (S), 
and moderate (M).                                                                                                      
 
For most of the 5 factors 
of the “ATP Profile Test” 
the percentage of patients 
who are in the normal 
region increases from 
VS, S, to M. 
 
 The MES is highly 
correlated with the CFS 
Ability scale (R2 = .645, 
p < .001).  

Pietrangelo 
et al. 
(2009). 
 

cross-
sectional 
 

n= 4 CFS 
patients 
n= 2 female 
patients, 
meeting CDC 
criteria                            
n= 2 male 
patients 

CDC 1994 
criteria 
 

1. CFS diagnosis 
according to CDC 
criteria 
 
2. skeletal 
    muscle 
    membrane 
    testing 

Global 
transcriptome 
analysis 

aaRNA 
obtained 
from 
vastus 
lateralis 
muscle 
biopsy 
 

47 genes significantly 
altered in CFS patients: 2 
up-regulated, 38 down-
regulated and 7 up-
regulated in females, but 
down-regulated in males. 
 
Gene Pathways:                                                                                                                                
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meeting CDC 
criteria for CFS 
 
Controls: 
n= 9 healthy 
volunteers 
 

  Control of Ox-Phos; 3 
mitochondrial genes were 
down-regulated: SOD2, 
FDX1, and NQO1. 
                                                                                                       
Energy Balance; 
depressed transcription of 
several genes implicated 
in the energy 
metabolism: PFKFB3, 
PDK4, GOT1, AMPD3, 
and ATP-binding cassette 
member 5.  One gene, 
VLDLR was up-regulated 
                                                                                               
Apoptosis; FOS, MYC, 
SOX17, AATF, CEBPD 
were all down-regulated.                                                                                                                                                                         

Reuter, et al. 
(2011). 
 

cross-
sectional 
 

n= 44 CFS 
patients 
 
Controls: 
n= 49 age and 
gender-matched 
healthy subjects 
 

Royal 
Australasian 
College of 
Physicians 
CFS clinical 
practice 
guidelines 
 

1. medical 
diagnosis of CFS 
using the Royal 
Australasian 
College of 
Physicians CFS 
clinical practice 
guidelines 
 
2. FSS 
 

1. Endogenous 
carnitine: total, 
L-, 
and 
acylcarnitine 
 
2. 35 
individual 
carnitines 

plasma 
 

CFS patients had lower 
individual carnitines: 
C8:1 (p = .0201), C14 (p 
= .0023), C16:1 (p = 
.0383), C18 (p = .0104), 
C18:1 (p < .0001) , and 
C18:2 (p < .0001). 
 
CFS patients had higher 
C12DC (p < .0001) and 
C18:1-OH (p = .0191). 
 
Negative correlation 
between FSS scores and 
C8:1, C14, C16:1, 
specifically with C18:1 
(R = -.3547, p = .0009) 
and C18:2 (R = -.4191, p 
< .0001). 
 
Significant positive 
correlations between 
fatigue severity and 
C12DC, C16, and C18:1-
OH. 

Smits et al. 
(2011). 
 

cross-
sectional 
 

n= 16 CFS 
patients 
 
Controls: 
n= 11 male 
healthy 
volunteers   

1. CDC 
1994 
criteria 
 
2. Severe 
fatigue 
determined 
as > 35 on 
the fatigue 
subscale of 
the CIS. 
 
3. Fatigue 
longer than 
6 months 
 
4. Fatigue 
not 
explained 
by somatic 
or 
psychiatric 
illness or 
ongoing 
exertion and 

1. diagnosis of 
CFS according to 
CDC criteria 
 
2. CIS 
 
3. SIP-8.   
 

1. ATP 
production rate  
 
2. Respiratory 
chain 
complexes 
activity 
(Complex I, 
II+III, II, and 
IV) 
 
3. Citrate 
Synthase 
   levels 
 

right 
quadriceps 
muscle 
biopsies 
 

 
No significant 
differences in ATP 
production or respiratory 
chain complex activity in 
CFS patients. 
 
Citrate synthase levels 
were lower in CFS 
patients (p < .001). 
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is not 
relieved by 
rest.                                                     
 
5. myalgia 
and/or 
exercise 
intolerance. 
 
6. 
Substantial 
functional 
impairment 
determined 
by a score 
of 700+ on 
the SIP-8.                                                                     

Maes et al. 
(2009a).  

cross-
sectional 
 

n= 58 ME/CFS 
patients 
 
Controls: 
n= 22 healthy 
volunteers 
 

1994 CDC 
criteria 
 

1. CFS diagnosis 
                                                                           
2. FF scale 

CoQ10 levels 
 

plasma 
 

Plasma CoQ10 lower in 
ME/CFS patients (F = 
31.0, df = 1/78, p = 
.00001) 
 
Negative association 
between CoQ10 and total 
FF scale score (r = .28, p 
= .03). 
 
Negative correlation 
between CoQ10 and 
fatigue (r = -.86, p < 10-

5).                                                                                                                     
Booth et al. 
(2012). 
 

cross-
sectional 
 

n= 61 ME/CFS 
patients (Cohort 
1; still ill after 
interventions; 
from previous 
study)      
 
n= 138 
ME/CFS 
patients (Cohort 
2; no prior 
interventions) 
 
Controls: 
n= 53 normal, 
healthy 
volunteers 
(Myhill et al., 
2012) 

1. CDC 
1994 
criteria 
 
2. ICCME 
(most, if not 
all were 
met) 

1. CFS diagnosis 
according to CDC 
criteria 
 
2. the Bell CFS 
Ability Scale 
 

1. 5 parameters 
of the ATP 
Profile test: 
   a. ATPmg 
   b. ATPend 
   c. Ox-Phos 
   d. TL OUT 
   e. TL IN 
2. MES 
3. Nfn  
4. MESinh 

neutrophils ME/CFS patients had 
reduced ATP production 
 
Mitochondrial 
dysfunction, mainly 
through partial blockage 
of the TL was 
demonstrated in both 
cohorts.   
 
It was observed that 
neutrophils used at least 
two different pathways to 
compensate for 
mitochondrial 
dysfunction.  
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Table 3. Studies Investigating Mitochondrial Dysfunction in Other Fatigued Populations 

Authors Study 
Design 

Sample 
Characteristics 

Fatigue 
Definition 

Fatigue 
Measurement 

Technique 

Mitochondrial 
Dynamic Assessed 

Sample 
Source Findings 

Fukazawa et 
al. (1996).  

cross-
sectional 

n= 25 MS 
patients; n= 11 
with disabling 
fatigue and n= 
14 without 
fatigue 
 
Controls: 
n= 25 age- and 
sex-matched 
healthy 
volunteers 
 

1. 
debilitating, 
persistent, or 
relapsing 
fatigue 
noted after 
the onset of 
MS   
 
2. lack of 
other causes 
of fatigue 
based on a 
history, 
physical 
examination, 
and 
laboratory 
tests. 

Medical  
diagnosis of 
fatigue 
 

carnitine levels: 
total, free, and 
acylcarnitine 
 

serum 
 

No significant 
differences in carnitine 
levels between the 
groups. 
 

Kurup et al. 
(2003a). 
 

cross-
sectional 
 

n= 15 ME 
patients 
 
Controls: 
n= 45 age and 
sex-matched 
healthy 
volunteers 
 

CDC criteria 
 

structured 
clinical 
interview to 
assess CFS 
and comorbid 
conditions 
 

Mitochondrial 
markers: 
1. ubiquinone 
2. ROS/RNS 
    a. MDA 
    b. 
Hydroperoxide 
    c. conjugated 
dienes 
    d. NO 
3. antioxidants 
    a. glutathione 
    b. SD 
    c. catalase 
    d. GSH 
peroxidase 
    e. GSH 
reductase 

RBCs and 
plasma/serum 
 

1. Ubiquinone lower in 
ME patients (F = 259.36, 
p < .01) 
 
2. ROS markers higher 
in ME patients 
    a. MDA  
        (F= 4.56, p < 0.05) 
    b. Hydroperoxide 
        (F= 3.25, p < 0.05)  
    c. conjugated dienes 
        (F= 16.21, p < 0.01)  
    d. NO 
         (F= 6.54, p < 0.05)  
3. antioxidants lower in 
ME patients 
    a. glutathione 
        (F= 8.36, p < 0.05) 
    b. SD 
        (F= 7.56, p < 0.05) 
    c. catalase 
        (F= 3.98, p < 0.05) 
    d. GSH peroxidase 
        (F= 11.26, p < 0.01) 
    e. GSH reductase 
        (F= 4.26, p < 0.05) 

Segal et al. 
(2012). 

cross-
sectional 

n=  71 SLE 
patients 
 
Controls: 
n= 51 healthy 
volunteers 

not specified 1. Visual 
Analogue 
Scale-fatigue 
 
2. FSS 
 
3. Profile of 
Fatigue (ProF) 

F2-isoprostane Plasma SLE patients with 
fatigue had higher levels 
of  F2-isoprostane than 
non-fatigued SLE 
patients (p = .0076). 
 
Positive correlation 
between F2-isoprostane 
and fatigue in SLE 
patients. 
 
F2-isoprostane predicts 
higher FSS scores in 
SLE patients (p = .0002). 

Hsiao et al. 
(2013). 
 

repeated 
measures; 
Baseline 
Day 1, 

n= 15 men with 
non-metastatic 
prostate cancer 
receiving ADT 

not specified 
 

revised Piper 
Fatigue Sale 
 

radiation-induced 
changes in 
mitochondria-
related gene 

WBCs-RNA 
 

Eleven genes related to 
mitochondrial function 
were differentially 
expressed over time 
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Day 7, 
Day 14, 
Day 19/21, 
Day 38-42 
of EBRT, 
and  Day 
68-72 after 
EBRT 

and scheduled 
to receive 
EBRT. 
 
Controls: 
n= 15 age, 
gender, and 
race matched 
controls. 
 

expression during EBRT (p < .05). 
 
After Bonferroni, only 
SLC25A23 was 
significantly down-
regulated post-EBRT (p 
= .008 - .02).                                                                                          
 
Eight of the 11 
differentially expressed 
genes were significantly 
associated with fatigue 
scores (p = .012 - .0003). 

Voss et al. 
(2013). 
 

cross-
sectional 
 

n= 5 HIV 
patients with 
high fatigue  
 
n=5 HIV 
patients with 
low fatigue  
 
Controls: 
n= 5 healthy 
controls 
 

HIV-related 
fatigue 

revised 26-
Item Piper 
Fatigue Scale 
 

genomic 
(mitochondrial and 
nuclear) expression 
markers of 
mitochondrial 
dysfunction 

CD14+ cells 
 

Genes pertaining to 
mitochondrial function 
include: CHD1L (τ =       
-.49) and ALDOB (τ =     
-.62), TIMM17B (τ = 
.62), GSR (τ = .62), 
IMMT (τ = .57), and 
SLC25A26 (τ = .62). 
 
2 HIV-associated genes 
related to mitochondrial 
function, fatty acid 
metabolism: ACAD9    (τ 
= .20) and PPAR-alpha 
(τ = -.44). 

CFS= chronic fatigue syndrome; ME= myalgic encephalomyelitis; CDC= Centers for Disease Control and Prevention; DSM  III-R = Diagnostic 
& Statistical Manual of Mental Disorders 3rd Edition Revised RNA = ribonucleic acid; L/P ratio = lactate/pyruvate ratio; DNA= 
deoxyribonucleic acid; mtDNA= mitochondrial DNA; ADLs= activities of daily living; ROS= reactive oxygen species; RNS= reactive nitrogen 
species; MDA= malondialdehyde; NO= nitric oxide; SD= superoxide dismutase; GSH= glutathione; RBCs= red blood cells; PCR= polymerase 
chain reaction; PBMCs= peripheral blood mononuclear cells; EIF2B4= eukaryotic translation initiation factor 2B, subunit 4δ, tv-1 ; EIF4G1= 
eukaryotic translation initiation factor 4γ, 1, tv-5; MRPL23 = mitochondrial ribosomal protein L23; ABCD4= ATP binding cassette, subfamily D 
(ALD), member 4, tv-4 ; PEX16=peroxisomal biogenesis factor 16, tv-1; HLA = human leukocyte antigen; CCFP = chronic ciguatera fish 
poisoning; GWVs = Gulf War Veterans; PC = prostate cancer; IgM= immunoglobulin subtype M  ; IgG= immunoglobulin subtype G  ; CoQ10= 
Coenzyme Q10; ATP= adenosine triphosphate; TL-IN= transports ATP to cytosol; TL-OUT= transports ADP from cytosol to mitochondria; 
aaRNA = amino allyl RNA  ; Ox-Phos= oxidative phosphorylation; SOD2= superoxide dismutase 2, mitochondrial; FDX1= ferredoxin 1; 
NQO1= nicotinamide adenine dinucleotide phosphate dehydrogenase quinone 1; PFKFB3= 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 
3(allosteric enzyme);; PDK4 = pyruvate dehydrogenase kinase, isoenzyme 4 ; GOT1= glutamic-oxaloacetic transaminase 1;  AMPD3= adenosine 
monophosphate deaminse (isoform E); VLDLR = very low density lipoprotein receptor; FOS= V-fos FBJ murine osteosarcoma viral oncogene 
homolog; MYC = v-myc myelocytomatosis viral oncogene homolog; SOX17= SRY-related HMG-box transcription factor;AATF= apoptosis 
antagonizing transcription factor; CEBPD = nuclear factor-IL6-beta;  ICCME= International Consensus Criteria Myalgic Encephalomyelitis; 
ATPmg= whole cell ATP measured by adding excess Mg; ATPend= ATP measured with endogenous Mg only; Nfn= number of factors with 
normal; values; MESinh= revised MES using the % ATP inhibited instead of TL IN; MS= multiple sclerosis; EBRT= external beam radiation 
therapy; WBCs= white blood cells; SLC25A23 = solute carrier family 25, member 23; HIV= human immunodeficiency virus; CD14 = monocyte; 
LDH = lactate dehydrogenase. 

CFS patients were the most studied (72% of all articles reviewed).  CFS subjects were 

phenotyped by clinical diagnosis using the 1988 or 1994 Center for Disease Control (CDC) 

diagnostic criteria alone (n=17) or in combination with other developed criteria (n=3), such as 

the Australian definition for CFS (n= 1), the British definition for CFS (n=1), and the 

International Consensus Criteria for Myalgic Encephalomyelitis (ICCME) (n=1). Two studies 
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used other diagnostic guidelines; one used the Oxford Consensus criteria and one group used the 

diagnostic criteria established by the Royal Australasian College of Physicians Working Group.   

Fatigue was defined either through clinical diagnosis alone or in combination with self-

report questionnaires. Most articles (n=16) quantified fatigue using a variety of questionnaires 

such as the Fatigue Severity Scale (n=4), CFS Impairment Index (CFS-II) (n=2), Checklist 

Individual Strength (CIS) fatigue subscale (n=2), Sickness Impact Profile (n=2), Chalder Fatigue 

Scale (n=1), the Fibromyalgia and the CFS Rating Scale (FF Scale) (n=2), Symptom Checklist 

90-R (n=2), CFS Ability Scale (n=2), the revised Piper Fatigue Scale (n=2), Visual Analogue 

Scale-fatigue (VAS) (n=1), the Profile of Fatigue (ProF) (n=1), and structured interviews (n=3).  

A number of mitochondrial parameters were investigated as potential markers for the 

fatigue conditions. In about 70% (n=18) of the studies, mitochondrial biomarkers were obtained 

from peripheral blood samples; in the remaining 7 studies, lower extremity skeletal muscle 

biopsy specimens were used. Dysfunctions in the mitochondrial structure, mitochondrial 

function, mitochondrial energy metabolism, immune/inflammatory response, and genetics were 

investigated as potential contributors to fatigue. Studies are grouped into these four areas for 

review. 

3. 1 Mitochondrial Structure 

 Four studies investigated the association of fatigue with mitochondrial number, size, 

and/or shape. All four studies were cross-sectional in design, included patients with CFS, and 

used muscle biopsy specimens to determine the potential mitochondrial markers. One study 

quantified fatigue through the use of a self-report questionnaire; whereas, three studies assumed 

fatigue through medical diagnosis. In one study about 7% of tibialis anterior (n=69), quadriceps 

(n=4), or medial head gastrocnemius (n=1) muscle biopsies from CFS subjects had 



www.manaraa.com

17 

 

mitochondrial hyperplasia; however, because there were no structural abnormalities noted, the 

authors concluded that mitochondrial structural abnormalities were not a feature of CFS 

(Edwards, Gibson, Clague, & Helliwell, 1993).  Findings were similar in another study in which 

no significant mitochondrial structural differences were found in the right leg vastus lateralis 

muscle biopsies of CFS patients versus controls (Plioplys & Plioplys, 1995a). 

One study investigating the vastus lateralis muscle biopsies of CFS subjects compared to 

normal controls found a significantly larger (hypertrophic) mitochondrial size and shape (3-8 

times larger), often with noticeable branching of the cristae, termed compartmentalization, 

(Behan, More, Downie, & Gow, 1995).  In another study of CFS patients with decreased energy 

metabolism, the vastus lateralis muscle biopsy specimens, as categorized by observed lactate to 

pyruvate production in the biopsy samples, were found to have minor, nonspecific changes to 

mitochondrial shape and structure (paracrystalline inclusions and increased numbers of 

pleomorphic mitochondria with proliferation of cristae) (Behan, Holt, Kay, & Moonie, 1999).  

However, a vastus lateralis muscle specimen from a CFS patient with normal energy metabolism 

showed abundant pleomorphic mitochondria, but these structural changes were not observed in 

the vastus lateralis muscle specimens from CFS subjects with increased energy metabolism 

(Behan et al., 1999).  

In summary, three of these four cross-sectional studies investigated the relationship 

between fatigue and mitochondrial number, shape, and/or size and found no significant 

differences with mitochondrial shape and structure among CFS patients and controls. Only one 

study observed significant mitochondrial hypertrophy in the CFS patients compared to healthy 

controls using skeletal muscle specimens. 
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3.2 Mitochondrial Function 

Eleven studies investigated aspects of mitochondrial function; all were cross-sectional in 

design.  Most studies (n=8) focused on mitochondrial enzymes, while the rest (n=3) focused on 

oxidative and/or nitrosative stress. Most studies looked at CFS or ME/CFS patients, while one 

study investigated fatigue in SLE patients. 

3.2.1 Mitochondrial enzymes.  

Four studies measured mitochondrial enzymes using muscle biopsy specimens and the 

remaining ones used peripheral blood specimens.  Six studies only enrolled CFS patients, one 

included ME/CFS patients, and the remaining study enrolled only ME patients. Almost all 

participants were enrolled based on their medical diagnosis, except for one study which used a 

self-report questionnaire to measure fatigue.  In four studies fatigue was further assessed by 

structured clinical interviews (n=2) and self-report questionnaires (n=2). 

A significant reduction in citrate synthase, succinate reductase, and cytochrome-c oxidase 

was observed in the anterior tibialis muscle biopsy samples of CFS patients compared to healthy 

controls, which was attributed to the reduction in physical activity commonly present in CFS 

subjects (McArdle et al., 1996).  A significant reduction in citrate synthase in the right 

quadriceps muscle biopsy samples from CFS subjects was also confirmed recently (Smits et al., 

2011). Citrate synthase is located in the mitochondrial matrix and is an essential enzyme in the 

citric acid cycle (Tymoczko, Berg, & Stryer, 2010). Succinate reductase (Complex II) and 

cytochrome-c oxidase (Complex IV) are two of the four mitochondrial transmembrane enzyme 

complexes of the electron transport chain (Tymoczko et al., 2010). 

In contrast, one study observed no significant difference with the skeletal muscle biopsies 

of partial cytochrome-c oxidase and myoadenylate deaminase (MAD) between CFS patients and 
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healthy controls; MAD was more associated with the symptom of myalgia than fatigue (Edwards 

et al., 1993).  MAD is the muscle-specific subtype of adenosine monophosphate (AMP) 

deaminase and is involved in nucleotide metabolism (Tymoczko et al., 2010; Verzijl et al., 

1998). Another study observed no difference in the vastus lateralis muscle biopsy levels of 

lactate dehydrogenase and cytochrome-c oxidase activity in CFS patients and controls (Behan et 

al., 1999).  Lactate dehydrogenase is an enzyme located in the cytoplasm of cells and contributes 

to the formation of lactate from pyruvate (Tymoczko et al., 2010). 

Four articles examined the levels of Coenzyme Q10 (CoQ10) in fatigued patients with 

either ME or CFS compared to healthy controls (Kurup & Kurup, 2003a, 2003b; Maes et al., 

2009a, 2009b). ME and CFS patients had significantly lower plasma levels of CoQ10 compared 

to healthy controls (Kurup & Kurup, 2003a, 2003b). Plasma CoQ10 was also observed to be 

significantly lower in ME/CFS and depressed patients with CFS compared to controls (Maes et 

al., 2009a, 2009b). Significant, inverse relationships were observed with plasma CoQ10 levels 

and severity of illness scores of ME/CFS patients, specifically, greater fatigue and autonomic 

symptoms were associated with lower levels of CoQ10 (Maes et al., 2009a). However, in 

patients with depression there was no correlation observed with severity of illness total or 

individual scores and plasma CoQ10 levels (Maes et al., 2009b).  The presence of CFS 

independently predicted low plasma CoQ10 levels (Maes et al., 2009b; Kurup & Kurup, 2003a, 

2003b). 

No longitudinal studies investigated the association between mitochondrial enzymes and 

fatigue. The cross-sectional studies reviewed reported conflicting associations between 

mitochondrial enzymes and fatigue. CoQ10 was the most studied mitochondrial enzyme, where 



www.manaraa.com

20 

 

reduced plasma levels of CoQ10 were found in the fatigued populations compared to healthy 

controls. 

3.2.2 Oxidative/Nitrosative stress.  

Three cross-sectional studies, two from the same research group, investigated oxidative 

and nitrosative stress in CFS and ME patients compared to healthy controls. All three used 

peripheral blood specimens for biologic analyses, one study investigated patients with CFS, one 

study investigated ME, and one study investigated fatigue in SLE. Two of the studies 

complemented medical diagnosis with a structured clinical interview while one study defined 

fatigue through the use of self-report questionnaires.   

Antioxidants (Glutathione, superoxide dismutase, catalase, GSH peroxidase, and GSH 

reductase) were significantly decreased, while ROS and reactive nitrogen species (RNS) 

(malondialdehyde [MDA], conjugated dienes, hydroperoxides, and nitric oxide) were 

significantly increased in the plasma/serum samples of CFS patients compared to healthy 

controls (Kurup & Kurup, 2003a). Similar results were observed in subjects with ME (Kurup & 

Kurup, 2003b).  It is hypothesized that the aforementioned disruption in the oxidative stress 

pathway is the downstream result of an imbalance in intracellular calcium and magnesium, 

which results in high intracellular calcium and low intracellular magnesium (Kurup & Kurup, 

2003a, 2003b). 

Another study investigated the association between F2-isoprostance levels and fatigue in 

patients with SLE.  They observed that fatigued SLE patients had higher levels of  F2-

isoprostane than non-fatigued SLE patients (Segal et al., 2012). A positive correlation between 

F2-isoprostane and fatigue was observed in SLE patients and it was observed that F2-isoprostane 

predicts higher FSS scores in SLE patients.  F2-isoprostane is currently acknowledged as the 
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most reliable measure of in vivo oxidative stress (Segal, 2012). The results from this study 

provide further evidence of an association between oxidative stress and the development of 

fatigue. 

3.3 Mitochondrial Energy Metabolism  

Ten studies investigated aspects of mitochondrial energy metabolism; all were cross-

sectional in design.  Most studies (n=6) focused on fatty acid metabolism, while the rest (n=4) 

focused on ATP production. Most studies looked at CFS or ME/CFS patients, while one study 

investigated fatigue in MS patients. 

  3.3.1 ATP production.  

Four cross-sectional studies investigated mitochondrial energy metabolism as a potential 

marker in fatiguing conditions. Mitochondrial energy metabolism was assessed from muscle 

biopsies in two of the studies and from peripheral blood in the remaining studies. Two studies 

only enrolled CFS patients, while the remaining two studies included both ME and CFS patients.  

 The mitochondrial energy metabolism was measured using the ATP profile test in two 

studies (Myhill, Booth, & McLaren-Howard, 2009; Booth, Myhill, & McLaren-Howard, 2012).  

The ATP profile tests measures three parameters of mitochondrial function in neutrophils 

extracted from peripheral blood, (1) ATP concentration (how much ATP is present) and ATP 

ratio (what fraction of ATP is available for energy supply), (2) the efficiency of oxidative 

phosphorylation (ADP to ATP recycling efficiency), and (3) TL OUT (ADP out of cytosol into 

mitochondria) and TL IN (ATP from mitochondria into the cytosol). A Mitochondrial Energy 

Score (MES) was calculated by multiplying all five factors (ATP, ATP ratio, Ox Phos, TL OUT, 

TL IN, TL OUT x TL IN). One of the two studies that used this ATP Profile test observed that 

the percentage of participants with normal values of mitochondrial function increased as fatigue 
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symptoms decreased (Myhill et al., 2009). In addition, the MES was positively correlated with 

scores on the CFS Ability scale (Myhill et al., 2009) indicating that greater mitochondrial 

efficiency was associated with higher levels of activity and function in those with CFS/ME.   

A second study by the same group confirmed the presence of mitochondrial dysfunction 

in patients with ME/CFS by observing partial blockage of the ADP-ATP translocator protein, 

adenosine nucleotide translocase (TL) (Booth et al., 2012). The TL protein functions to transfer 

ATP out of the mitochondria into the cell cytoplasm as well as transferring ADP from the cell 

cytoplasm into the mitochondria to generate more ATP (Booth, 2012). Cells can compensate for 

some of the dysfunction in ATP production through two alternative pathways: by increased 

glyocolysis and the use of adenlyate kinase pathway of ATP formation (Booth et al., 2012). 

Therefore, partial blockage of the TL protein can lead to impaired energy production. 

Another study measured two aspects of energy metabolism in the vastus lateralis muscle 

biopsy samples: aerobic respiration and respiratory chain function, which showed no difference 

between CFS patients and healthy controls for either parameter (Behan et al., 1999).  In addition, 

there were no differences in ATP production rate or respiratory chain complex activity found in 

the right quadriceps muscle biopsy samples of CFS patients compared to healthy controls (Smits 

et al., 2011). Although ME/CFS patients had impaired energy production as determined by the 

ATP profile test, no differences in either aerobic respiration or respiratory chain complex activity 

were found in CFS patients compared to healthy controls. 

3.3.2 Fatty acid metabolism.  

Six cross-sectional articles investigated carnitine levels in fatiguing conditions. Five 

studies included CFS patients and one study included MS patients. Four studies used peripheral 

blood specimens for biologic analyses and two studies used muscle biopsies.  Four studies 
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complimented medical diagnosis with self-report questionnaires, while two studies assumed 

fatigue through medical diagnosis.  

 Acylcarnitine serum levels were significantly lower in CFS patients compared to healthy 

controls; however, free L-carnitine serum levels were not significantly different between the two 

groups (Kuratsune et al., 1994). Another study observed significantly lower serum levels of total 

and free carnitine in CFS patients of both genders when compared to healthy controls, as well as 

lower serum levels of acylcarnitine in CFS patients compared to controls, using historical data 

(Plioplys & Plioplys, 1995b). However, no difference between total, free, and acylcarnitine 

serum levels were found in a more recent study of CFS patients versus healthy controls 

(Soetekouw et al., 2000), as well as in patients with MS (with and without fatigue) compared to 

healthy controls (Fukazawa, Sasaki, Kikuchi, Hamada, & Tashiro, 1996). Another study also 

showed no significant difference in L-carnitine, total carnitine, or total acylcarnitine plasma 

levels between CFS patients and healthy controls; however, when individual acylcarnitine 

subtypes were investigated in the CFS sample, 6 acylcarnitine subtypes (C8:1, C14, C16:1, C18, 

C18:1, and C18:2) were significantly lower, while 2 acylcarnitine subtypes (C12DC and C18:1-

OH) were significantly higher in plasma of CFS participants compared to the matched controls 

(Reuter & Evans, 2011).   

Higher acylcarnitine serum levels were inversely correlated with the Chronic Fatigue 

Syndrome Impairment Index (CFS-II) mental index score and CFS-II total score (Plioplys & 

Plioplys, 1995a). Lower serum acylcarnitine was associated with worse activity levels and 

symptom presentation, but these relationships were not observed with free L-carnitine serum 

levels (Kuratsune et al., 1994). A later study, however, showed that higher free carnitine serum 

levels were significantly associated with better physical abilities, and higher free and total 
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carnitine serum levels were significantly associated with lower fatigue severity (Plioplys & 

Plioplys, 1995b). 

4. Immune Response 

Four studies investigated dysfunctional immune responses to mitochondria in various 

fatiguing conditions. Three of these studies were cross-sectional and one study used repeated 

measures. Three studies only enrolled CFS patients and one study included fatigued patients with 

various diagnoses. Three studies used peripheral blood specimens for biologic analyses, while 

one study used muscle biopsies. In one study clinical diagnosis was complemented with self-

report questionnaires and interview assessments, while three studies assumed fatigue through 

medical diagnosis.  

Two studies from the same research group investigated autoimmune responses to acute 

phase phospholipids in patients with fatiguing illnesses (Hokama et al., 2008, 2009). CFS 

subjects had serum lipid fractions that resembled those commonly found in patients poisoned 

with ciguatoxin, a marine toxin (Hokama et al., 2008).  Sera from patients with CFS, chronic 

ciguartera fish poisoning (CCFP), gulf war veterans (GWV), and prostate cancer patients 

contained antibodies to cardiolipin (aCL), a phospholipid of the mitochondrial membrane 

(Hokama et al., 2008). Further study found that 95% of CFS patients had anticardiolipin 

antibody (ACA) of the IgM subtype, 10% showed an IgG response, 2.5% had an IgA response; 4 

patients were positive for IgG and IgM, and one patient was positive for all three antibody 

subtypes (Hokama et al., 2009).   

Two studies investigated the role of enteroviral infection with the onset of CFS (McArdle 

et al., 1996; Vernon et al., 2006).  One study examined anterior tibialis muscle biopsy specimens 

for the presence of enteroviral RNA.  However, they failed to detect the presence of a persistent 
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enteroviral infection in patients with CFS (McArdle et al., 1996). Another study observed 23 

differentially expressed genes from peripheral blood samples of patients with persistent post-

Epstein-Barr (EBV) fatigue compared to controls (those who recovered without persistent 

fatigue) in the early phase (0-3 months) of infection.  Of the 23 differentially expressed genes, 8 

were found in subjects with persistent fatigue post-EBV and were involved in binding and 

metabolism ontologies (Vernon et al., 2006).  When exploring both early and late (>6 months) 

phases of infection, 24 genes were differentially expressed between cases and controls.  Half of 

the 24 differentially expressed genes were associated with mitochondrial functions such as fatty 

acid oxidation (CRAT, carnitine acetyltransferase; APOA2, apolipoprotein A-II), apoptosis 

(BTG1, B-cell translocation gene 1; FOLR1, folate receptor 1; CTRL, chymotrypsin-like), DNA 

repair, and mitochondrial membrane (COX8A, cytochrome c oxidase subunit VIII; COX11, 

cytochrome c oxidase assembly protein; KCNA10, potassium voltage-gated channel; MGP, 

matrix G1a protein; ATP5L, ATP synthase) (Vernon et al., 2006). 

In the four studies reviewed an autoimmune response was found as evidenced by the 

presence of mitochondrial phospholipids in the sera of CFS patients. Although there was no 

evidence of persistent enteroviral infection found in muscle biopsies of CFS patients, differential 

expression of genes associated with mitochondrial function was noted in patients post EBV 

infection.  Comparing the results among these studies is challenging. Only one research group 

investigated autoimmune responses to acute phase phospholipids, publishing two different 

studies.  Both of the studies investigating post-infective fatigue investigated different viral 

infections (enterovirus vs. EBV) and the two studies employed different study designs, cross-

sectional (McArdle et al., 1996) and repeated measures (Vernon et al., 2006). 
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5. Genetics 

Five articles explored the association between gene expression profiles in fatigue 

conditions versus controls. Three studies were cross-sectional and two studies used repeated 

measures designs. Three studies only included CFS patients, one study included men with 

prostate cancer, and one study included patients with Human Immunodeficiency Virus (HIV). 

Three studies used peripheral blood specimens for genomic analyses, while two studies used 

muscle biopsies. One study complemented clinical diagnosis with self-report questionnaires, two 

studies used self-report questionnaires alone to measure fatigue, and two assumed fatigue 

through medical diagnosis.  

The first genomic study found no significant differences between CFS patients and 

healthy controls in the total volume of mitochondrial DNA present, two mtDNA rearrangements, 

and the presence of one point mutation (Behan et al., 1999).  A real-time PCR (qPCR) study 

found 11 mitochondrial function-related genes to be differentially expressed during radiation 

therapy for prostate cancer and 8 of the 11 genes were significantly associated with fatigue 

intensification during radiation therapy (Hsiao et al., 2013).  These 8 genes are involved in 

mitochondrial apoptosis and signaling, mitochondrial membrane polarity and potential, 

mitochondrial morphology and fission/fusion, and mitochondrial and small molecule transport 

(Hsiao et al., 2013). 

 One microarray analysis found 35 differentially expressed genes in the peripheral blood 

mononuclear cells (PBMCs) from CFS patients, where 3 up-regulated genes had activities 

specific to mitochondrial function: EIF2B4 (eukaryotic translation initiation factor 2B, subunit 

4δ, tv-1), EIF4G1 (eukaryotic translation initiation factor, 4γ, 1, tv-5), and MRPL23 

(mitochondrial ribosomal protein L23) (Kaushik et al., 2005). Another microarray study found 
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47 differentially expressed genes (2 up-regulated and 38 down-regulated in both genders; 7 up-

regulated in females, yet down-regulated in males) from vastus lateralis muscle biopsies of CSF 

patients compared to healthy controls. The down-regulated genes were associated with 

impairment of antioxidant mechanisms, aerobic energy production, and metabolism (Pietrangelo 

et al., 2009). Another study investigated gene networks in CD14+ cells from HIV-infected 

patients who reported high fatigue, versus those who reported low fatigue or healthy controls, 

where 6 mitochondrial-related genes (CHD1L and ALDOB genes were negatively associated 

with fatigue; TIMM17B, GSR, IMMT, and SLC25A26 were positively associated with fatigue) 

are implicated in protein translocation into the mitochondrial matrix, cristae morphology, ATP-

binding and protein binding, metabolism, oxidation and reduction processes, and energy 

production were identified (Voss et al., 2013).  

Five articles explored the association between gene expression profiles in fatiguing 

conditions versus controls. Common mitochondria-specific functional pathways were reported 

from the results of the gene expression studies included in review, to include pathways related to 

metabolism, energy production, protein transport, mitochondrial morphology, central nervous 

system dysfunction and post-viral infection.  The pathways identified in these studies were 

similar across three different patient populations and supported areas of dysfunction identified in 

the previous sections. 

6. Discussion 

The purpose of this systematic review was to examine markers of mitochondrial function 

that have evidence of an association with fatigue in order to identify areas needed for further 

research. This review included studies focusing on markers of mitochondrial function in relation 

to fatigue. Dysfunctions in the mitochondrial structure, mitochondrial function (mitochondrial 
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enzymes and oxidative/nitrosative stress), mitochondrial energy metabolism (ATP production 

and fatty acid metabolism), immune response, and genetics were investigated as potential 

contributors to fatigue.   

Carnitine was the most investigated mitochondrial function marker reported in this 

review (n=6).  Dysfunctional carnitine levels were reported in all six studies that investigated the 

biomarker; however, the specifics of the dysfunction varied among the studies.  Genetic profiles 

were the second most studied mitochondrial parameter.  Even though different genes were 

reported across the studies, common pathways (metabolism, energy production, protein 

transport, mitochondrial morphology, central nervous system dysfunction, and post-viral 

infection) were identified among the articles. The most commonly investigated mitochondrial 

enzyme was CoQ10. It was the only mitochondrial biomarker found to have a consistent 

association with fatigue identified in this review (Kurup & Kurup, 2003a, 2003b; Maes et al., 

2009a, 2009b). CoQ10 is an essential enzyme in the electron transport chain, responsible for 

shuttling electrons and protons (Tymoczko et al., 2010).  Further investigation is needed to 

understand the role of CoQ10 in fatigue.  

CoQ10 deficiency can be either primary or secondary in nature.  Primary deficiency 

stems from dysfunction with the genes coding for the synthesis of CoQ10, whereas secondary 

deficiency results from anything that is not primary in nature (Horvath, 2012; Littarru & Tiano, 

2010); Potgeiter, Pretorius, and Pepper, 2013). CoQ10 is endogenously produced and therefore, 

dietary intake has minimal influence on the CoQ10 concentration in the body.  However, if 

CoQ10 is found to be depleted, especially with primary deficiency, supplementation is a 

therapeutic option (Potgeiter, Pretorius, and Pepper, 2013). In clinical practice, vitamins such as 

riboflavin B2, niacin B3, vitamin E and other mitochondrial cofactors including levo-carnitine, 
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lipoic acid, acetyl-l-carnitine are used as supplemental treatment for mitochondrial disorders in 

order to either enhance ETC enzyme activity or antioxidant defenses (Cohen, 2000). The 

efficacy of these vitamins and mitochondrial cofactors as treatments for mitochondrial disorders 

remain controversial (Cohen, 2000).  

CoQ10 has been shown to have clinical benefits attributed to its antioxidant properties 

and its role in cellular bioenergetics (Littarru & Tiano, 2010); hence, it is being used as a 

therapeutic option for a number of mitochondria-related clinical conditions including those with 

cardiovascular disease, reproductive issues,  and neurodegenerative diseases (Littarru & Tiano, 

2010).  In this review, there are only two research teams that investigated the relationship 

between CoQ10 and fatigue.  More clinical studies are needed to confirm the role of vitamins 

and mitochondrial cofactors in alleviating fatigue symptoms (Horvath, 2012; Potgeiter, Pretorius, 

and Pepper, 2013).  

Based on the findings of this review, alterations in energy metabolism may contribute to 

fatigue.  Support for this conclusion was evident from dysfunctions reported with both oxidative 

phosphorylation and ATP production and recycling. Impaired oxidative phosphorylation was 

noted through reduced citrate synthase activity, reduced levels of succinate reductase (Complex 

I), cytochrome-c oxidase (Complex IV), and CoQ10 (electron shuttle from Complex I and II to 

Complex III), as well as evidenced through disrupted oxidative stress (decreased levels of 

antioxidants and increased levels of ROS and F2-isoprostance) (McArdle et al., 1996; Kurup & 

Kurup, 2003a, 2003b; Maes et al., 2009a, 2009b; Segal et al., 2012; Smits et al., 2011). ATP 

concentration, recycling, and the efficiency of oxidative phosphorylation were found to be 

disrupted through the ATP Profile Test (Myhill et al., 2009; Booth et al., 2012). Fatty acid 

metabolism was also impaired as evidenced by abnormal carnitine levels (Kuratsune et al., 1994; 
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Plioplys & Plioplys, 1995a, 1995b; Reuter & Evans, 2011). Genetic investigations found 

abnormal gene transcription pathways related to metabolism, energy production, protein 

transport (Hsiao et al., 2013; Kaushik et al., 2005; Pietrangelo et al., 2009; Voss et al., 2013). 

These genetic pathways support and the areas of dysfunction found in the aforementioned 

studies. 

The limitations identified in this review are: 83% of the studies were cross-sectional, 79% 

of the studies enrolled only CFS patients, and there were inconsistent associations found between 

mitochondrial biomarkers and fatigue. Future studies utilizing longitudinal designs need to be 

conducted to establish associations between mitochondrial dysfunction and fatigue development. 

Additionally, if mitochondrial dysfunction and fatigue are observed, longitudinal studies can 

provide more evidence about the characteristics of the association.  

The inclusion of diverse patient populations in future studies would provide evidence 

regarding common mitochondrial mechanisms as an etiology for fatigue. The predominant 

patient population included in the reviewed studies was CFS.  Knowledge gained from studies of 

the CFS population needs to be translated to other fatigued populations, such as those with 

cancer or other chronic diseases. Understanding the biological mechanisms underlying fatigue 

development is important to enhance clinical evaluation and treatment. 

Furthermore, fatigue was defined differently among the reviewed studies and different 

diagnostic criteria and self-report instruments were used. This variability limited the ability to 

compare findings across studies. Furthermore, the self-report questionnaires included in the 

reviewed studies are valid measures of fatigue, but not necessarily for the populations included 

in the studies, namely CFS. Future research needs to work towards establishing a global 

agreement on the clinical definition of fatigue. Once a clinical definition of fatigue is established, 
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research will need to focus on developing a valid and reliable tool for measurement of fatigue in 

the clinical setting. Until a global definition is developed, researchers need to ensure that the 

existing fatigue tools are validated in their clinical populations of interest. 

The literature review identified some potential relationships between mitochondrial 

dysfunction and fatigue; however, the findings were limited to predominantly one patient 

population, were from mostly cross-sectional studies, and results were confounded by the use of 

multiple definitions of fatigue. These limitations culminated in inconsistent findings across 

studies. Therefore, the results from the review suggest further investigation to address the gaps in 

the current literature. Once the underlying mechanisms of fatigue are better understood, 

individualized and tailored therapies can be developed to improve quality of life of patients. 
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Chapter Three 
 
 
 

Prostate cancer (PC) is the most common type of cancer in men, outside of skin cancer, 

and the second leading cause of cancer death among American men (American Cancer Society 

[ACS], 2014). It is estimated that in 2014, there will be 2.5 million men in the United States with 

PC, and 233,000 of them will be newly diagnosed. These statistics indicate that PC is a condition 

that affects a significant number of men; about 1 in 7 men will be diagnosed during their 

lifetime. Fortunately, advances in diagnosis and treatment have greatly improved the prognosis 

and survival of men with PC (ACS, 2014).  

Treatment for PC depends on patient and disease characteristics. If the cancer is localized 

or has progressed into the nearby tissue, then various forms of radiation therapy (RT) may be 

implemented (ACS, 2014). External beam radiation therapy (EBRT), for example, can be an 

effective treatment option, but it can result in numerous side effects including urinary, bowel, 

and sexual dysfunctions, as well as fatigue, which can greatly impair the individual’s health-

related quality of life (HRQOL) (Budäus et al., 2012). A systematic review comparing fatigue 

prevalence among different treatment modes for PC found that chronic fatigue or clinically-

significant fatigue, as determined through scores on various self-report assessments, was present 

in 13-22% of men who had radical prostatectomy, and a similar rate was found in patients on 

active surveillance (Langston, Armes, Levy, Tidey, & Ream, 2013). However, it was observed 

that 71% of men reported clinically significant fatigue while receiving radiation therapy.  
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Additionally, 24-33% of men experienced persistent fatigue more than one year post-RT 

(Langston et al., 2013).   

Fatigue related to RT is a type of cancer-related fatigue (CRF). CRF is one of the most 

commonly reported side effects of cancer and its treatment, affecting about 80% of people 

receiving chemotherapy or RT (Hofman, Ryan, Figueroa-Moseley, Jean-Pierre, & Morrow, 

2007; National Comprehensive Cancer Network [NCCN], 2012; Piper & Cella, 2010). People 

with cancer often characterize CRF as a lack of energy, weakness, muscle heaviness, inability to 

recover from physical activity in a timely manner, the need for exaggerated effort to complete a 

task, or once the task is complete, the need for greater rest periods (Cheville, 2009; Hofman, et 

al., 2007; Mitchell & Berger, 2011). Not only is CRF one of the most prevalent symptoms, it is 

also reported to be one of the most distressing, often negatively affecting multiple HRQOL 

domains (Barsevick, Frost, Zwinderman, Hall, & Halyard, 2010; Ryan, et al., 2007; Tazi & 

Errihani, 2011). CRF is poorly understood and lacks a clear, single, clinical definition or 

etiology. This makes it a challenging symptom for healthcare providers to diagnose, resulting in 

increased symptom burden, and decreased HRQOL.  

The biological basis for fatigue in individuals with cancer is an area of great research 

interest. Many different biological mechanisms have been theorized to play a role in the etiology 

of CRF, such as proinflammatory cytokines, serotonin dysregulation, and hypothalamic-

pituitary-adrenal axis dysfunction (Wang, 2008). An alternative, plausible biological mechanism 

for fatigue is mitochondrial dysfunction. Self-reported descriptions of reduced energy and 

muscle weakness lend support for a possible relationship of CRF to mitochondrial dysfunction in 

that these symptoms are similar to those that might be present with mitochondrial disease (such 

as exercise intolerance and weakness, among other skeletal muscle and energy or metabolic 
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manifestations) (Haas et al., 2007). Therefore, mitochondrial dysfunction is a plausible 

mechanism of CRF.  

 Mitochondria have an essential role in energy production through the process of oxidative 

phosphorylation whereby nutrients are converted into adenosine triphosphate (ATP), which 

powers many of the cells’ activities. In addition to energy production, mitochondria have been 

implicated in various physiologic processes including the production of reactive oxygen species 

(ROS), pyrimidine and lipid biosynthesis, regulation of cellular levels of substrates (amino acids, 

metabolites, enzyme cofactors), apoptosis, metal (Fe-S cluster and heme) metabolism, calcium 

homeostasis and flux, neurotransmitter synthesis, heat production, and insulin secretion (Duchen, 

2004; Nunnari & Suomalainen, 2012; Pieczenik & Neustadt, 2007). Therefore, damage to 

mitochondria can have widespread health outcomes (Duchen, 2004). Mitochondria are becoming 

increasingly recognized as major contributors to human health and disease because of their 

widespread influences (Cohen & Gold, 2001). 

Radiation therapy has been observed to cause mitochondrial dysfunction through two 

primary insults. First, radiation can induce a decline in mitochondrial electron transport chain 

(ETC) enzyme function (Yoshida, Goto, Kawakatsu, Urata, & Li, 2012).  Secondly, with the 

decline in ETC function, there is a resulting increase in the production of ROS (Yoshida et al., 

2012).  ROS production under normal conditions is beneficial for cellular signaling; however, 

during exposure to radiation, ROS production increases to toxic levels resulting in damage to 

mitochondrial and nuclear DNA, thereby disrupting normal cell metabolic and physiologic 

activities (Azzam, Jay-Gerin, & Pain, 2012). While mitochondrial dysfunction has been 

suggested as a possible mechanism underlying CRF (Wang, 2008), only one reported study has 

investigated the potential role of mitochondrial dysfunction in CRF (Hsiao, Wang, Kaushal, & 
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Saligan, 2013).  The investigators examined changes in fatigue scores (measured by the revised 

Piper Fatigue Scale) and mitochondria-related gene expression (measured from RNA in 

peripheral blood) at seven time points (baseline, day 1, day 7, day 14, treatment midpoint, 

treatment completion, and 30-days post treatment) during EBRT in men with nonmetastatic 

prostate cancer. The investigators observed that differential expression of genes related to 

mitochondrial metabolism, energy production, and protein transport were associated with self-

reported fatigue in their participants (Hsiao et al., 2013). 

Mechanisms underlying mitochondria-related disease states have predominantly focused 

on DNA damage and ROS generation (Cohen & Gold, 2001; Pieczenik & Neustadt, 2007).  

Mitochondrial dysfunction can be categorized as primary (inherent) or secondary (acquired 

dysfunction) (Cohen & Gold, 2001; Read & Calnan, 2000). Primary dysfunction results from 

mitochondrial DNA (mtDNA) mutations inherited from mothers, who are the sole contributors 

of mitochondria to their offspring (Cohen & Gold, 2001). Mitochondrial DNA has a much higher 

mutation rate than nuclear DNA because it lacks protective histones (Read & Calnan, 2000), is 

readily exposed to damage from ROS production (Alexander et al., 2010; Pieczenik & Neustadt, 

2007; Reynolds et al., 2007), and lacks certain DNA repair mechanisms (Cohen & Gold, 2001). 

Secondary mitochondrial dysfunction results from the influence of external mechanisms such as 

environmental or pharmacologic toxins that can damage the mtDNA (Cohen & Gold, 2001). 

Mitochondria can protect themselves from the accumulation of damage through the processes of 

fission and fusion (Chan, 2006; Nunnari & Suomalainen, 2012; Youle & van der Bliek, 2012); 

however, if these mechanisms are altered, mitochondrial dysfunction can contribute to diseases 

such as cancer, diabetes, Alzheimer’s Disease, Parkinson’s Disease, Fibromyalgia Syndrome, 
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and serious mental disorders such as schizophrenia and bipolar disease (Blackstone & Chang, 

2011; Duchen, 2004; Pieczenik & Neustadt, 2007; Reynolds et al., 2007).  

Mitochondrial research has predominantly focused on the role of mitochondrial 

dysfunction in disease pathology (Chan, 2006; Seo et al., 2010). However, there has been some 

work associating mitochondrial dysfunction with the development of distressing symptoms such 

as fatigue, neuropathic pain, weakness, and depression in addition to disease states (Pieczenik & 

Neustadt, 2007). Abnormal (swollen and vacuolated) mitochondria have been observed to have a 

relationship with chemotherapy-induced neuropathy in the absence of evidence of nerve fiber 

damage or dysfunction (Flatters & Bennett, 2006).  Patients with depression have also been 

observed to have alterations in metabolism, specifically with mitochondrial ETC enzymes 

(Rezin, Amboni, Zugno, Quevedo, & Streck, 2009). More research is needed to understand the 

role of mitochondrial dysfunction in symptom onset or exacerbation. 

 Given the paucity of research in this area, the current study was designed to expand 

knowledge of the relationship of mitochondrial dysfunction to fatigue and HRQOL at baseline 

and at completion of EBRT among men with nonmetastatic (NM)-PC. This study was a 

secondary analysis of existing data from a National Institutes of Health (NIH ) Institutional 

Review Board approved study titled Relationship between Mitochondrial Dysfunction and 

Fatigue in Cancer Patients Following External Beam Radiation Therapy (#10-NR-0128). 

Specific aims of the secondary study were to: (1) describe levels of biomarkers of mitochondrial 

function, fatigue, and HRQOL before and at the completion of EBRT, (2) examine relationships 

over time in levels of biomarkers of mitochondrial function, fatigue, and HRQOL, and (3) 

compare levels of biomarkers of mitochondrial function in men with non-clinically significant 
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fatigue (low fatigue) to those with clinically significant fatigue (high fatigue) from baseline to 

completion of EBRT.  

Conceptual Framework  

 Biobehavioral research encompasses interactions of the physiological, psychological, 

and social components of health (Grady, 2006). For the purposes of this research, HRQOL of 

men with NM-PC was conceptualized within a biobehavioral framework with individual, 

treatment, and disease-related factors, biological factors, behavioral manifestations, and HRQOL 

components (Figure 1). 

Figure 1. Biobehavioral Research Model 

 

 Individual and disease-related factors. Individual factors were empirically defined as 

demographic data and comorbidities. Disease-related factors were defined as tumor 

characteristics (Gleason scores), tumor-related laboratory markers (prostate specific antigen 

[PSA]), and tumor burden (tumor-stage [t-stage]). Gleason scores indicate the extent of tumor 
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differentiation (range = 1 [well differentiated] to 5 [lack of differentiation]) (Epstein, Allsbrook, 

Amin, Egevad, & the ISUP Grading Committee, 2005). Higher Gleason scores indicate less 

prostate tissue differentiation, suggesting that the disease is more likely to spread (Epstein et al., 

2005).  PSA levels are used in the routine screening of men for detection of prostate cancer 

(Pater, Hart, Blonigen, Lindsell, & Barrett, 2012) and as a surveillance marker for disease 

progression or recurrence. T-staging is used to grade the severity of prostate cancer, ranging 

from stage 1a (early-stage) to stage IVb (metastatic cancer) (Cheng, Montironi, Bostwick, 

Lopez-Beltran, & Berney, 2012). 

 EBRT. Radiation-related factors included radiation dose and length of treatment. 

EBRT treatment can result in untoward side effects that could impact patient HRQOL (ACS, 

2014).   

 Biological factors. Biological factors included biomarkers of mitochondrial function 

(complex I-V; SOD2) that may result from the disease and/or its treatment. Despite sharing 

similar disease profiles and treatment regimens, men with NM-PC can exhibit great variance in 

their symptom severity.  The underlying mechanisms behind the symptoms and severity of 

symptoms are not clear. Mitochondrial dysfunction is one plausible mechanism for the presence 

of symptoms such as CRF. 

Behavioral manifestation. The behavioral manifestation for this study was fatigue, a 

highly prevalent symptom in cancer patients (Hofman et al., 2007; NCCN, 2012; Piper & Cella, 

2010). While fatigue has been associated with mitochondrial dysfunction in various clinical 

populations (Pieczenik & Neustadt, 2007), these associations have not yet been examined in men 

with NM-PC.  
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 Health-related quality of life. As more treatment options are emerging for PC, HRQOL 

is becoming an increasingly important factor in the treatment decision-making process (Torvinen 

et al., 2013). Even though it is a crucial concept in health research, HRQOL has been difficult to 

define because of its complexity, with meaning imparted by the values of the individual. 

However, accurately assessing HRQOL is important for addressing the individual’s well-being 

during and after the treatment process. 

Methods 

 This paper reports a secondary analysis of a descriptive, longitudinal study Relationship 

between Mitochondrial Dysfunction and Fatigue in Cancer Patients Following External Beam 

Radiation Therapy that was approved by the NIH Institutional Review Board (#10-NR-0128). 

Men were enrolled if they: (a) had NM-PC, (b) were scheduled to receive EBRT, and (c) were 18 

years of age or older. Patients were excluded if they: (a) had any inflammatory or infectious 

condition such as rheumatoid arthritis, lupus, or cirrhosis; an infectious disease such as HIV, 

tuberculosis, or hepatitis; (b) had other types of cancer; (c) had a major psychiatric disorder or 

alcohol or drug abuse within the past 5 years; (d) were receiving or scheduled to receive 

chemotherapy; or (e) were taking steroids, non-steroidal anti-inflammatories, or tranquilizers. All 

study participants were seen in the outpatient clinics of the Radiation Oncology Department of 

the National Cancer Institute (NCI) at NIH, Bethesda, MD from August 2010 to August 2012.  

 Study time points. Data for this study were collected at two time points: baseline (before 

EBRT) and on the last day (completion) of EBRT. Study variables were measured using 

demographic, questionnaire, and biologic data sources. 
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 Demographic data. Demographic data were obtained by reviewing medical records to 

obtain age, race, socioeconomic status, and disease-related factors including tumor 

characteristics and tumor-related laboratory markers. 

 Questionnaire data. CRF is a complex symptom because of its multidimensional nature 

(Given, 2008). Therefore, two previously validated self-report fatigue questionnaires were used 

to quantify various dimensions of participants’ fatigue. 

The revised Piper Fatigue Scale (rPFS). This is a 22-item paper/pencil questionnaire that 

measures multiple dimensions of fatigue: behavioral/severity (6 items), sensory (5 items), 

cognitive/mood (6 items), and affective meaning (5 items) using a 0 to 10 intensity rating scale 

(0 = none; 10 = worst intensity). Psychometric properties of the rPFS from previous studies have 

included excellent reliability and validity estimates when used in cancer patients; internal 

consistency ranged from 0.83 to 0.97 for the total instrument and its subscales (Borneman et al., 

2011).  

The Functional Assessment of Cancer Therapy– Fatigue subscale (FACT-F). This is a 

validated 13-item questionnaire exploring fatigue symptoms in various populations, including 

cancer patients and healthy participants. This questionnaire has shown good test-retest reliability 

(r = 0.90), and internal consistency (α = 0.93 and 0.95) on initial and test-retest administration, 

suggesting that it can be administered as an independent, unidimensional measure of fatigue 

(Yellen, Cella, Webster, Blendowski, & Kaplan, 1997). The FACT-F can also be used to 

measure minimally important changes that may be clinically relevant. A greater than or equal to 

3-point decrease in the FACT-F score is considered to be the threshold denoting a minimally-

important change that may be clinically relevant (Cella, Eton, Lai, Peterman, & Merkel, 2002).  
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HRQOL was measured using the FACT-Prostate (FACT-P) questionnaire. This 

questionnaire assesses HRQOL in five different domains: physical well-being (7 items), 

social/family well-being (7 items), emotional well-being (6 items), functional well-being (7 

items), and the PC-specific assessment of functional status (12 items). The instrument has been 

validated for use in men with PC (across two samples, internal consistency α = 0.87 to 0.89) 

(Esper et al., 1997; Cella, Nichol, Eton, Nelson, & Mulani, 2009).  

 Mitochondrial measures. Peripheral blood collected at both study time points was used to 

obtain protein markers of mitochondrial function.  

 Cell lysate collection. Peripheral whole blood samples collected using 

ethylenediamineteraacidic (EDTA) tubes were centrifuged immediately after collection at 3,000 

rpm in 4˚C for 10 minutes. After the plasma was extracted from the tube, the remaining cell 

sample was divided  into 500 µl aliquots and stored in -80ºC freezers until batch analysis. The 

cells from the whole blood samples were lysed with a cell extraction buffer (10mM Tris, pH 7.4, 

100mM NaCl, 1mM EDTA, 1% Trition X-100, 10% Glycerol, and 0.1% SDS). A protease 

inhibitor was added to the buffer to prevent the degradation of enzymes. Protein content was 

quantified using the PierceTM BCATM Protein Assay (Thermo Fisher ScientificTM, Rockford, IL) 

per manufacturer’s protocol. After protein quantification, the cell lysate samples were diluted 

with incubation buffer per assay protocol and stored at -20˚C overnight. 

 Serum preparation. Peripheral whole blood collected using serum-separating tubes (SST)  

was centrifuged immediately after collection at 3,000 rpm and 4˚C for 10 minutes, then the 

serum was divided into 250 µl aliquots that were stored in -80ºC freezers until batch analysis. 

 Two areas of mitochondrial function were investigated in this study: (a) energy 

metabolism and (b) oxidative stress. 
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 Energy metabolism: Mitochondrial electron transport chain. The respiratory chain is 

comprised of five enzyme complexes, respiratory complexes I-V (Azzam, Jay-Gerin, & Pain, 

2012). Dysfunction in any complex could interrupt the transfer of electrons, thereby disrupting 

efficient and effective energy metabolism. The Human Profiling ELISA kits (Abcam®, 

Cambridge, MA) were used for the quantitative detection of the mitochondrial respiratory 

enzyme complexes (complexes I-V; 1 kit for each complex) from cell lysates. 

Oxidative stress: Antioxidants. Manganese superoxide dismutase (MnSOD) provides the 

first line of defense against ROS in the mitochondria, countering oxidative stress (Lustgarten et 

al., 2011). Serum MnSOD levels were assessed by the MnSOD ELISA kit (Abcam®, Cambridge, 

MA). 

Statistical Analysis 

 Descriptive statistics were used to illustrate the demographic characteristics of 

participants. If variables were normally distributed, means and standard deviations were reported 

versus medians and ranges data that was not normally distributed. Medians and ranges were 

calculated for fatigue questionnaires, and means and standard deviations were calculated for 

HRQOL questionnaires. Mitochondrial enzymes were described with medians and ranges. 

Nonparametric Wilcoxon matched-pairs rank-sum tests were used to analyze changes in levels of 

fatigue between baseline and completion of EBRT. A paired t-test was used to analyze changes 

in levels of HRQOL between baseline and completion of EBRT. Mitochondrial data were log-

transformed and paired t-tests were used to analyze changes in levels of biomarkers of 

mitochondrial function over time. Estimated correlations of mitochondrial biomarkers, fatigue 

(as assessed by rPFS and FACT-F scores), and HRQOL were calculated using Pearson’s 

product-moment correlation coefficients if both variables were normally distributed and 
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Spearman’s rank correlation coefficients if one or more of the variables was not normally 

distributed. Participants in this study were grouped into clinically significant (high) and non-

clinically significant (low) fatigue groups based on changes in FACT-F scores from baseline to 

completion of EBRT. High fatigue groups had a decrease of 3 or more points in FACT-F scores, 

while those who had less than a 3-point decrease in FACT-F scores were categorized in the low 

fatigue group. 

Power analysis. The primary purpose of this dissertation study is to explore the 

relationship between mitochondrial function and fatigue intensification during EBRT in men 

diagnosed with NM-PC who completed an NINR protocol (# 10-NR-0128) at the NIH, Bethesda, 

MD. Minor diagnostic criteria for primary respiratory chain (RC) disorders in adults include a 

30%–40% activity (effect size 0.30 - 0.40) of any RC complex, as observed in fibroblasts or 

lymphoblasts (Bernier, 2002). An n = 25 has an 80% power to show a difference in levels of 

mitochondrial markers before and after EBRT at an effect size of 0.58 with an alpha of 0.05. A 

secondary aim of this study is to examine relationships over time with changes in levels of 

fatigue, mitochondrial function, and HR-QOL. A study by Hsiao et al. (2013) found significant 

correlations between fatigue scores and differential expression of mitochondrial genes during 

EBRT with an n = 15. Therefore, the sample size n = 25 will be sufficient to address a secondary 

aim of this study. However, due to sample degradation, n = 22 participants were included in this 

study. 

Results 

 Sample demographics.  Twenty-two men (mean age = 65.86 + 6.87 years) were 

included in the study. All participants were able to carry on all pre-disease activities without 

restrictions, based on their Karnofsky performance scores (Johnson et al., 2014). Table 1 
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describes the demographic and clinical characteristics of the sample. About 70% of participants 

had Gleason  

scores of 7 (31.82%) or 8 (36.36%). About 70% of participants had a clinical t-stage (Cheng et 

al., 2012) of T1c (22.72%), T2a (27.27%), or T2c (22.72%), indicating that most participants had  

disease that had not spread outside the prostate gland. Participants received EBRT five days a  

week; 17 participants received a total dose of 75.50 Grays for 42 days, while 5 participants who 

had prior prostatectomies, received 68.40 Grays of EBRT for 38 days.  

Table 1. Demographic and Clinical Characteristics of Sample 
Variable Mean (SD) n (%) Median (Range) 

Age 65.86 (6.87)   
Race    
     White  16 (72.73)  
     A.A./Black  4 (18.18)  
     Hispanic  2 (9.09)  
Ethnicity    
     Hispanic/Latino  3 (13.64)  
     Not Hispanic/Latino  17 (77.27)  

Disease Characteristics 
Gleason 7.59 (.91)   
Clinical T-Stage    
     T1c  5 (22.72)  
     T2a  6 (27.27)  
     T2b  2 (9.09)  
     T2c  5 (22.72)  
     T3a  1 (4.55)  
     T3b  1 (4.55)  

Pre-EBRT Levels 
PSA(0-3.99 ng/mL) 3.69 (5.24)  
Testosterone (181-758 ng/dL) 220.37 (166.02)  
WBC (4.23-9.07 K/µL) 6.13 (1.67)  
RBC (4.63-6.08 M/µL) 4.61 (0.44)  
Hemoglobin (13.70-17.50 g/dL)  13.95 (12.80-15.60) 
Albumin (3.70-4.70 g/dL)  4.10 (2.70-4.40) 
Body Mass Index (18.50-24.90) 29.85 (22.90-40.70) 
SD = standard deviation, A.A. = African American, T-stage = tumor stage (TNM classification for tumor staging), 
PSA = prostate specific antigen, WBC = white blood cell, RBC = red blood cell 
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 Fatigue. The median fatigue score on the FACT-F at baseline was 47.50 (range 28.00-

52.00) and at treatment completion was 43.00 (range = 20.00-52.00); lower scores on the FACT-

F indicate higher fatigue. The median score on the rPFS at baseline was 0.93 (range = 0-4.41) 

and at treatment completion was 3.68 (range = 0-6.73); higher scores on the rPFS indicate more 

fatigue. 

 There was a significant change in fatigue scores detected on both instruments from 

baseline to the completion of EBRT for the total sample (FACT-F p = 0.02; rPFS p = 0.004). 

There was no significant difference in the change in FACT-F scores from baseline to completion 

of EBRT between subjects who received 38 versus those who received 42 days of treatment (p = 

0.24). Although the change in rPFS scores over time was significant, the actual change in the 

level of fatigue was not considered to be clinically relevant, given that significant fatigue for the 

rPFS is defined as a score of > 6 (Piper et al., 1998). In contrast to scores on the rPFS, the change 

in FACT-F scores over time was both statistically and clinically significant. 

 Participants were grouped into those with a clinically significant increase in fatigue from 

baseline to completion of EBRT (n = 12) and those who did not have a clinically significant 

increase (n = 10). Within the high fatigue group there was a significant decrease in FACT-F 

scores from baseline (median = 48.00 [range = 28.00-52.00]) to completion of EBRT (median = 

35.50 [range = 20.00-46.00], p = 0.002), while there was no significant change in median FACT-

F score from baseline (44.00 [range = 30.00-52.00]) to completion of EBRT (47.50 [range = 

41.00-52.00], p = 0.12) in the low fatigue group. Table 2a describes the fatigue and HRQOL 

characteristics of the all participants and Table 2b describes the fatigue characteristics for those 

with high versus low fatigue scores.   
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Table 2.  

2a. Fatigue and HRQOL Scores for all Study Participants 

 

2b. Fatigue Scores for those with High versus Low Fatigue 

HRQOL= health-related quality of life, EBRT = external beam radiation therapy, SD = standard deviation,      
FACT-F= Functional Assessment of Cancer Therapy-fatigue subscale, FACT-P = Functional Assessment of Cancer  
Therapy-Prostate questionnaire 

 HRQOL.  The mean FACT-P score at baseline was 132.79 (SD = 12.85) and at 

completion of EBRT was 123.74 (SD = 18.24); lower scores on the FACT-P indicate lower 

HRQOL. This was a significant decline in HRQOL from baseline to completion of treatment (p 

= 0.003). At the completion of EBRT, the HRQOL of the participants was below the 

standardized HRQOL score of 126.30 for the general population on the FACT-P (Wei et al., 

2002). There was a significant decline in HRQOL from baseline (mean = 132.78, SD = 10.05) to 

completion of treatment (mean = 118.44, SD = 17.11, p = 0.01) in those with high fatigue.  In 

contrast, there was no significant decline in HRQOL from baseline (mean = 132.80, SD = 15.50) 

to completion of EBRT (mean = 128.50, SD = 18.75, p = 0.12) in the low fatigue group. 

 Mitochondrial measures. Five mitochondrial enzymes (complex I-V) and one 

mitochondrial antioxidant (SOD2) were measured to assess mitochondrial function. There were 

no significant changes in the mean optical densities of complex I-IV and SOD2 enzymes from 

Changes in Fatigue and HRQOL Scores during EBRT 
  n Baseline Last day of Treatment Range p-value 

Fatigue  
median (range) 

rPFS 22 0.93 (0-4.41) 3.68 (0-6.73) 0-10 0.004 
FACT-F 22 47.50 (28-52) 43.00 (20-52) 0-52 0.02 

HRQOL 
Mean (SD) FACT-P 19 132.79 (12.85) 123.74 (18.24) 0-156 0.003 

Changes in FACT-F Scores of High and Low Fatigue Groups during EBRT 
  n Baseline 

Median (Range) 
Last day of Treatment 

Median (Range) Range p-value 

FACT-F High 12 48 (28-52) 35.5 (20-46) 0-52 0.002 
Low 10 44 (30-52) 47.50 (41-52) 0-52 0.12 
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baseline to the end of EBRT for the participants as a whole. However, when participants were 

categorized into high and low fatigue groups, patterns in the directions of the optical densities of 

the mitochondrial enzymes were observed. Table 3 lists each of the mitochondrial enzyme levels 

for baseline and at completion of EBRT for the high and low fatigue groups. 

Table 3. Mitochondrial Enzymes between High and Low Fatigue Participants   
  

 

 

 

 

 

 

 

 

 

 

 

 

 Complex I. For the participant group as a whole, the median mitochondrial enzyme 

optical density at baseline was 1.21 (range = 0.10-6.37) and at treatment completion was 0.92 

(range = 0.19-15.2). There was no significant change in mean enzyme optical density from 

baseline to completion of EBRT (t (21) = 0.57, p = 0.58).  

Level of Fatigue Mean (SE) Observed Pattern p 
High Fatigue (N=12)  Complex I Baseline -0.05 (0.17) 

Increase 0.68 
Complex I Completion  0.01 (0.14) 
 Complex II Baseline     -1.35 (0.18) 

Increase 0.93 
Complex II Completion -1.04 (0.07) 
 Complex III Baseline 0.14 (0.20) 

Increase 0.54 
Complex III Completion  0.30 (0.19) 
 Complex IV Baseline -0.32 (0.08) 

Increase 0.51 
Complex IV Completion  -0.24 (0.12) 
 SOD2 Baseline 3.12 (0.04) 

Decrease 0.79 
SOD2 Completion  3.11 (0.03) 

Low Fatigue (N=10)  Complex I Baseline 0.14 (0.13) 
Decrease 0.20 

Complex I Completion  -0.05 (0.13) 
 Complex II Baseline -1.34 (0.19) 

Decrease 0.97 
Complex II Completion -1.35 (0.06) 
 Complex III Baseline 0.66 (0.12) 

Decrease 0.16 
Complex III Completion  0.34 (0.24) 
 Complex IV Baseline -0.15 (0.14) 

Decrease 0.61 
Complex IV Completion  -0.22 (0.13) 
 SOD2 Baseline 3.04 (0.04) 

Increase 0.91 
SOD2 Completion  3.05 (0.05) 
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 Complex II. For the participant group as a whole, the median mitochondrial enzyme 

optical density at baseline was 0.07 (range = 0-0.14) and at treatment completion was 0.07 (range 

= 0.03-0.14). There was no significant change in mean enzyme optical density from baseline to 

completion of EBRT (t (12) = -1.38, p = 0.19). There was no significant difference in the mean 

complex II optical density between the high and low fatigue groups at baseline, but there was a 

significant difference at completion of EBRT (p = 0.01), with the high fatigue group having 

higher optical densities.  

 Complex III. For the participant group as a whole, the median mitochondrial enzyme 

optical density at baseline was 2.79 (range = 0.14-17.53) and at treatment completion was 2.19 

(range = 0.05-34.67). There was no significant change in mean enzyme optical density from 

baseline to completion of EBRT (t (21) = 0.33, p = 0.75). At baseline, there was a significant 

difference in the mean Complex III optical density between the groups (t (17.44) = -2.22, p = 

0.04), with the low fatigue group being higher than the high fatigue group, but this was not 

observed at the last day of EBRT.  

 Complex IV. For the participant group as a whole, the median mitochondrial enzyme 

optical density at baseline was 0.42 (range = 0.21-4.14) and at treatment completion was 0.36 

(range = 0.22-6.90). There was no significant change in mean enzyme optical density from 

baseline to completion of EBRT (t (21) = -0.14, p = 0.89).  

 Complex V. A colorimetric change was observed for complex V enzyme; however, the 

change was not measurable. A multitude of different serial dilutions were attempted; however, 

even completely undiluted cell lysate produced no signal above background after repeated 

attempts.  
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 SOD2. For the participant group as a whole, the median mitochondrial enzyme optical 

density at baseline was 1195.19 (range = 696.66-2003.01) and at treatment completion was 

1193.72 (range = 685.73-2007.62). There was no significant change in mean enzyme optical 

density from baseline to completion of EBRT (t (21) = 0.15, p = 0.88). 

 Correlations. Significant correlations for the participant group as a whole were observed 

between mitochondrial complex II optical density and FACT-F scores at baseline (r = -0.57, p = 

0.04), and at completion of EBRT (r = -0.64, p = 0.02). A significant correlation for the whole 

sample was also observed between the difference in FACT-P scores from baseline to treatment 

completion with difference in levels of complex III (r = -0.64, p = 0.003) and complex IV (r = -

0.59, p = 0.01) from baseline to completion of EBRT. 

 For those in the high fatigue group, significant correlations were observed at baseline 

between complex II and FACT-F (r = -0.85, p = 0.01) and HRQOL (r = -0.87, p = 0.01) as well 

as between complex III and rPFS (r = -0.69, p = 0.01). Significant correlations were also 

observed between the difference in HRQOL from baseline to treatment completion and 

mitochondrial enzymes (complex III: r = -0.68, p = 0.05), complex IV: r = -0.79, p = 0.01) from 

baseline to treatment completion in the high fatigue group. There were no significant correlations 

observed for mitochondrial enzymes and fatigue scores or HRQOL in the low fatigue group.  

Discussion 

To our knowledge, this is the first report of measures of mitochondrial enzyme function 

in relationship to fatigue prior to and at the completion of  EBRT in men with prostate cancer. 

There were significant increases in fatigue and a significant decrease in HRQOL from baseline to 

the completion of EBRT.  In the participant sample as a whole, there was no significant change 

in mitochondrial function from baseline to completion of treatment.  When patients were 
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characterized into groups based upon change in level of fatigue from baseline to EBRT 

completion, we observed preliminary evidence to support the possibility of distinct patterns 

between the groups in mitochondrial enzymes. Low fatigue participants tended to have higher 

relative levels of mitochondrial enzymes at baseline compared to the high fatigue participants, 

and the enzyme levels for the low fatigue group tended to decrease during therapy. The opposite 

was observed in the high fatigue group, such that lower relative mitochondrial enzyme levels 

were noted at baseline compared to the low fatigue group, and the enzyme levels tended to 

increase during EBRT. Opposite patterns were observed with the relative SOD2 enzyme levels, 

such that a decreasing pattern in relative SOD2 levels was noted in the high fatigue group, and an 

increasing pattern was observed in the low fatigue group. These preliminary findings suggest that 

alterations in energy metabolism may contribute to fatigue intensification during radiation 

therapy.  

The observed patterns in mitochondrial enzymes between participants with high and low 

fatigue levels may signal that there is a difference in energy demands between the two groups.  

High fatigue subjects may require more energy to maintain metabolic needs during therapy, thus 

driving the increase in mitochondrial ETC enzymes. On the other hand, those in the low fatigue 

group had higher baseline mitochondrial enzyme levels, which would in theory, enhance cellular 

energy and thereby support their metabolic needs during therapy.  

 Declines in mitochondrial enzymes and an increase in mitochondrial antioxidant levels 

have been reported in cells exposed to radiation therapy (Kam & Banati, 2013; Turrens, 2003; 

Yoshida et al., 2012). Reactive oxygen species are a byproduct of energy metabolism, and 

antioxidants such as SOD2 are protective agents against oxidative stress resulting from increased 

ROS production (Chan, 2006; Turrens, 2003). These preliminary data for the low fatigue group 
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revealed a pattern that mirrored the pattern observed in previous studies for radiation exposure -- 

a pattern towards decreased mitochondrial ETC enzymes and increased SOD2 levels. However, 

our preliminary data in the high fatigue group was the opposite from what would be expected 

with radiation exposure -- mitochondrial ETC enzymes increased in this group and SOD2 levels 

decreased. This discrepancy provokes a question as to whether the high fatigue subjects attained 

a less ideal EBRT outcome in terms of cancer cell death. We compared the mean PSA of high 

(0.26 + 0.0.74) and low fatigue (0.25 + 0.39) participants post-EBRT and found no significant 

difference (p = 0.20). These findings suggest the possibility that there is an increase in ETC 

enzyme energy metabolism in EBRT-related fatigue, resulting in an increase in ROS production 

and a decrease in antioxidant availability. However, further research is necessary to determine 

the clinical relevance, if any, of the relationship of high fatigue during EBRT to treatment 

outcomes.  

Previously published research with persons with chronic fatigue has documented reduced 

levels of succinate reductase (complex I), cytochrome-c oxidase (complex IV), and CoQ10 

(electron shuttle from complex I and II to complex III), as well as disrupted oxidative stress as 

evidenced by decreased levels of antioxidants (McArdle et al., 1996; Kurup & Kurup, 2003a, 

2003b).  Our findings revealed opposite patterns; relative levels of complexes I and IV enzymes 

were increasing, while relative SOD2 levels were decreasing among high fatigue subjects during 

EBRT. This discrepancy suggests that unlike chronic fatigue, treatment-related fatigue may 

entail a rapid increase in energy demand, requiring an escalation of mitochondrial energy 

metabolism. As the fatigue persists or becomes chronic, the compensation mechanism may begin 

to fail, exhausting the mitochondria as evidenced by reduction in mitochondrial enzyme levels, 

and in turn, resulting in increased ROS and reduced levels of antioxidants. This line of thinking 
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is consistent with the mitochondrial ETC decline implicated in aging and various 

neurodegenerative diseases (Enns, 2003; Wallace, 1999). 

The study also brings attention to the possible associations of complexes II and III with 

fatigue intensification and complexes II, III and IV with HRQOL during EBRT. Complex II 

dysfunction is often associated with a wide range of clinical manifestations including 

neuroendocrine disorders, metabolic issues, and skeletal myopathies, which may explain the 

observed relationship between complex II with fatigue and with HRQOL (Ackrell, 2002; Rutter, 

Winge, & Schiffman, 2010). Complex III plays a pivotal role in health and disease as it is one of 

the primary sites of ROS generation (Koopman et al., 2010; Rigoulet, Yoboue, & Devin, 2011). 

ROS production has been associated with many negative health implications (Alfadda & Sallam, 

2012) and could explain the observed association between increased complex III (increased 

ROS) and decreased fatigue and HRQOL. Complex IV is the final enzyme in the ETC 

responsible for the reduction of O2 to H2O (Mimaki, Wang, McKenzie, Thorburn, & Ryan, 

2012). Complex III and complex IV deficiencies are often associated with global, multi-systemic 

clinical presentations such as those seen in liver failure, renal tubulopathy, myopathy, and 

cardiomyopathy (Bénit, Lebon, & Rustin, 2009; Antonicka et al., 2003).  The broad nature of 

complex IV dysfunction may explain the observed association between complex IV and global 

HRQOL. The findings suggest that as mitochondrial enzyme levels increase, HRQOL declines. 

 This exploratory study identified novel relationships between mitochondrial ETC enzyme 

dysfunction, fatigue, and HRQOL prior to and at the completion of EBRT; however, the results 

are limited by the small sample size and the exploratory nature of the group comparisons. The 

differentiation between high and low fatigue scores on the FACT-F does not control for baseline 

fatigue levels; however, there were no differences noted between groups in the baseline fatigue 
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scores. Further investigations are warranted to identify specific mitochondrial activities and 

structures related to the ETC complexes that may directly influence fatigue and HRQOL using 

larger samples and more diverse populations. Additionally, as mitochondrial disorders have a 

large genetic component, the epigenetic impact of cancer therapies on mitochondrial DNA and 

its potential consequences for behavior need further investigation. 

Conclusions 

  This study explored the association between mitochondrial function, fatigue intensity, 

and health-related quality of life in men with prostate cancer receiving external beam radiation 

therapy. The most important preliminary finding from this study is the possibility that 

mitochondrial respiratory ETC complex enzymes might be related to fatigue intensification 

during EBRT. However, confirmatory research with a larger sample is needed. These future 

studies will be critical to determine if these preliminary findings are replicable, and if so, 

whether there are potential therapeutic targets in individuals at highest risk for fatigue 

intensification during EBRT, in order to optimize fatigue management and improve HRQOL. 
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Chapter Four 
 
 
 

To understand the mechanisms related to etiology of cancer-related fatigue (CRF), this 

dissertation research initially focused on understanding how fatigue intensifies immediately after 

completion of a localized radiation therapy for a non-metastatic cancer. As a certified oncology 

nurse, my interest in CRF primarily stems from my clinical encounters with oncology patients 

who battled through this debilitating symptom, sometimes even years after completion of their 

cancer treatments. Secondly, CRF is an important, discrete, and approachable problem. Unlike 

fatigue associated with other diseases such as chronic fatigue syndrome, fibromyalgia, or 

traumatic brain injury, the trajectory of CRF and the potential biological mechanisms can be 

monitored from the time of diagnosis, and its triggers, such as stage of disease as well as dose 

and type of treatment, can be identified and examined.  

The biological pathways responsible for CRF have not yet been established. CRF is 

commonly believed to be a multidimensional symptom that involves multiple psychosocial and 

physiologic mechanisms (Wang, 2008), with most studies focused on markers of inflammation 

such as cytokine levels. However, another plausible mechanism for fatigue is disturbances in 

mitochondrial function. With my specific interest in the role of mitochondrial function in CRF, 

my first step in this exploration was to conduct a literature review to examine markers of 

mitochondrial function that have been shown to be associated with fatigue in order to identify 

areas needing further research. The findings from this review provided an empirical foundation 
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for my program of research. Based on the findings of this review, an ideal starting point for my 

investigation involved the measurement of critical mitochondrial enzymes such as complexes I-

V and mitochondrial-specific oxidative stress marker before and after radiotherapy.  

Using the knowledge gained from the literature review, I developed a proposal to 

investigate – a potential association between altered energy metabolism as evidenced by 

mitochondrial measures and levels of fatigue – in the oncology population. To my knowledge, 

the research that followed is the first to describe the levels of and relationship between 

mitochondrial enzyme activity and fatigue prior to and at the completion of  external beam 

radiation therapy (EBRT) in men with prostate cancer. The primary aim of the research was to 

describe levels of biomarkers of mitochondrial function, fatigue, and health-related quality of life 

(HRQOL) before and at the completion of EBRT. A secondary analysis was conducted of a 

descriptive, longitudinal study, Relationship between Mitochondrial Dysfunction and Fatigue in 

Cancer Patients Following External Beam Radiation Therapy that was approved by the National 

Institutes of Health (NIH) Institutional Review Board (#10-NR-0128), using a subsample of 

twenty-two men with nonmetastatic prostate cancer. There were significant increases in the 

levels of fatigue and declines in HRQOL from baseline to the completion of EBRT. However, 

there was no significant change in the selected biomarkers of mitochondrial function from 

baseline to completion of treatment. This result was unexpected, given the a priori expectation of 

declines in mitochondrial enzymes and an increase in the mitochondrial antioxidant. My 

hypothesis was based upon the findings of my literature review which showed that in various 

fatigued populations, several mitochondrial enzymes involved in oxidative phosphorylation were 

significantly decreased with a significant increase in oxidative stress (McArdle et al., 1996; 

Kurup & Kurup, 2003a, 2003b; Maes et al., 2009a, 2009b; Segal et al., 2012). Additionally, 
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declines in mitochondrial enzymes and an increase in mitochondrial antioxidant levels have been 

reported in cells exposed to radiation therapy (Yoshida, Goto, Kawakatsu, Urata, & Li, 2012). 

Given the exploratory nature of the study, the dissertation research team decided to further 

investigate the patient sample to understand the relationship of fatigue and mitochondrial 

function in a well-characterized fatigue phenotype. We decided to categorize the participants into 

those who developed fatigue intensification and those who did not develop fatigue intensification 

during EBRT.  The fatigue categories were based upon a cut-score of a greater than or equal to 

3-point decrease in the Functional Assessment of Cancer Therapy-Fatigue subscale (FACT-F) 

score, which has been shown using this validated measure to represent the minimally important 

difference in this fatigue score that requires clinical intervention (Cella, Eton, Lai, Peterman, & 

Merkel, 2002).  

When patients were characterized into groups based upon change in level of fatigue from 

baseline to EBRT completion, there was preliminary evidence to support the possibility of 

patterns of mitochondrial enzyme levels between the two fatigue groups; however, these 

differences were not statistically significant. Those with non-clinically significant (low) fatigue 

had higher relative levels of mitochondrial electron transport chain (ETC) enzymes at baseline 

and lower levels of the antioxidant superoxide dismutase 2 (SOD2) at baseline compared to the 

clinically significant (high) fatigue participants. Further, the enzyme levels for the low fatigue 

group decreased during EBRT. The opposite was observed in the high fatigue group, such that 

lower relative mitochondrial ETC enzyme levels and higher antioxidant levels were noted at 

baseline in comparison to the low fatigue group, and the enzyme levels increased during EBRT. 

Opposite patterns were observed with the relative SOD2 enzyme levels, such that a decreasing 

pattern in relative SOD2 levels was noted in the high fatigue group, and an increasing pattern 
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was observed in the low fatigue group from baseline to completion of EBRT. These preliminary 

findings suggest that alterations in energy metabolism may contribute to fatigue intensification 

during radiation therapy. However, replication with a larger sample is necessary. Although our 

preliminary evidence was not statistically significant, the results of this dissertation study need to 

be replicated in light of the potential clinical implications of mitochondrial activity and CRF.  

The plans for the continuation of this program of research encompass a three-part 

trajectory: a clinically based inquiry, an animal model, and cell-based investigation. The future 

clinical research arm of my program of research will include replication of the dissertation 

research with a larger sample size of the same clinical population of men with non-metastatic 

prostate cancer receiving localized radiation therapy. Replication in other cancer populations 

(e.g., persons with lung, brain, and breast cancer) receiving radiation therapy will also be needed 

to test for the presence of a common physiologic pathway for the etiology of fatigue across 

irradiated populations. One such pathway might involve the association between mitochondrial 

dysfunction, inflammation, and neurodegenerative pathways. 

Investigation of the upstream pathway of genes encoding the mitochondrial complexes 

that correlated with fatigue in the dissertation findings would also be an important project to 

pursue, especially genes encoding complex II, which was significantly correlated with fatigue 

scores at baseline and at completion of EBRT. This upstream investigation would require the use 

of genomic and epigenetic platforms. Cancer and cancer therapy have been observed to initiate 

genetic and epigenetic modifications, such as deoxyribonucleic acid (DNA) methylation changes 

(Dobosy, Roberts, Fu, & Jarrard, 2007; Li, Carroll, & Dahiya, 2005). Wang et al. (unpublished 

data) from the NINR lab recently observed loss of DNA methylation in the promoter region of 

genes encoding a mitochondrial function-related gene for which expression was significantly 



www.manaraa.com

73 

 

associated with fatigue during EBRT in men with prostate cancer. These epigenetic 

modifications may be reversible through lifestyle remodeling, an important implication for the 

role of nursing interventions for those with cancer (Alegría-Torres, Baccarelli, & Bollati, 2011).   

Further, investigating the functional activity of the mitochondria to see if active 

mitochondrial respiration dysfunction is associated with fatigue during cancer therapy is worth 

pursuing. Aligning with mitochondrial experts at the National Institute of Nursing Research, 

Virginia Commonwealth University, and the University of Florida who can provide mentorship 

and opportunities in developing skills required to observe actively respiring mitochondria will be 

a crucial next step. 

The goal of my program of clinical research is to identify a biomarker of mitochondrial 

function that relates to the development of fatigue during radiation therapy. Ultimately, 

identification of the biologic mechanisms underlying CRF can lead to the development of 

potential therapeutic targets. Future animal and cell-based studies will be incorporated into my 

research trajectory to enable enhanced mechanistic investigations of the etiology of CRF. In the 

near future I will replicate the dissertation procedures in a murine model to determine sample-

specific central and peripheral markers that may establish the relationship of mitochondrial 

function and fatigue, using genomic and proteomic approaches. This animal investigation may 

assist in plotting important central and peripheral neuromuscular circuits that influence the 

development or intensification of fatigue behaviors in the animals. If therapeutic targets can be 

identified in the murine model of radiation-related fatigue, then therapeutic manipulations can be 

explored to potentially mitigate the fatigue response. 

In clinical practice, vitamin supplements such as riboflavin B2, niacin B3, vitamin E and 

other mitochondrial cofactors including levo-carnitine, lipoic acid, and acetyl-l-carnitine are used 
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as supplemental treatment for mitochondrial disorders in order to enhance either ETC enzyme 

activity or antioxidant defenses (Cohen, 2000). The efficacy of these vitamins and mitochondrial 

cofactors as treatments for mitochondrial disorders remain controversial and more research is 

needed, especially concerning the benefit of these supplements in an oncology population 

(Cohen, 2000). The mouse model will be essential to determine the effects of these therapies on 

mitochondrial function and fatigue prior to translation to human trials. 

The cell-based model will be equally important to enhance exploration into the 

mechanisms involved in CRF. The cell-based models will be utilized to provide a deeper 

understanding of the effects of radiation on the body. It has been widely reported that 

inflammation plays a role in CRF (Bower & Lamkin, 2013). Monocytes and other cell lines can 

be irradiated, cultured, and manipulated in various ways to replicate inflammatory responses in 

humans during radiation treatment. Additionally, the mitochondrial activity within these 

irradiated monocytes can be investigated to determine the effect of radiation on the mitochondria 

in this inflammatory cell. 

This planned program of research is designed to enhance understanding of the biomarkers 

of mitochondrial dysfunction that might contribute to fatigue. This program utilizes a three- 

model approach to maximize the knowledge that can be gained and the skills that can be 

acquired to answer this important research question.  Understanding the mechanisms behind 

CRF will ultimately enable identification of therapeutic targets and treatment strategies that can 

improve health-related quality of life of oncology patients. 
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Appendix 
 
 
 

The following measures will be used for the proposed study and are standardized forms that are 

validated. All measures have been completed by participants and data confidentially stored.  

1. Sociodemographic Data Sheet 

2. revised Piper Fatigue Scale  

3. Functional Assessment of Cancer Therapy- Fatigue subscale 

4. Functional Assessment of Cancer Therapy-Prostate 

 

 

 

 

 

 

 

 

 



www.manaraa.com

78 

 

 



www.manaraa.com

79 

 

 



www.manaraa.com

80 

 

 

 



www.manaraa.com

81 

 



www.manaraa.com

82 

 

 



www.manaraa.com

83 

 

 



www.manaraa.com

84 

 

 



www.manaraa.com

85 

 

 



www.manaraa.com

86 

 

 

 



www.manaraa.com

87 

 

    
 
 
 
 

Vita 
 
 
 

Kristin Ashley Filler was born on December 8, 1986 in Fairfield, California, and is an American 
citizen. She graduated from Bishop Ireton High School, Alexandria, Virginia in 2005. She 
received her Bachelor of Science, major in nursing, from Virginia Commonwealth University 
(VCU), Richmond, Virginia in 2009. She worked as a registered nurse on the inpatient oncology 
unit at the VCU Health Systems and at the Hospital Corporation of America (HCA) Johnston-
Willis Hospital from 2009-2012. In addition, she also worked as a research assistant on two R01 
funded nursing studies at the VCU School of Nursing from 2009-2012. During her doctoral 
studies she has had the honor of receiving support from the American Cancer Society, the Jonas 
Center for Nursing Excellence/AACN as well as a research traineeship with the National 
Institute of Nursing Research at the National Institutes of Health from 2012-2014.  

 

 


	Relationship of Mitochondrial Enzymes to Fatigue Intensity and Health-Related Quality of Life in Men with Prostate Cancer Receiving External Beam Radiation Therapy
	Downloaded from

	Title Page
	Acknowledgment
	Table of Contents
	Abstract
	Body of Manuscript
	Methods


